hkivancoral's picture
End of training
b8a8dc4
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4444444444444444

hushem_5x_beit_base_adamax_001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 6.2787
  • Accuracy: 0.4444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4418 1.0 27 1.4079 0.2444
1.2606 2.0 54 1.4566 0.4
1.1141 3.0 81 1.4147 0.3111
0.9738 4.0 108 1.7371 0.3556
0.7887 5.0 135 1.5516 0.3778
0.7198 6.0 162 1.3626 0.4
0.8269 7.0 189 1.5448 0.3778
0.8171 8.0 216 1.4576 0.4
0.7255 9.0 243 2.3915 0.3778
0.6369 10.0 270 1.6627 0.3778
0.6809 11.0 297 1.5201 0.3556
0.6237 12.0 324 1.3289 0.4222
0.6768 13.0 351 1.6115 0.3556
0.6336 14.0 378 2.0397 0.3778
0.5238 15.0 405 1.5857 0.3778
0.5016 16.0 432 1.4047 0.4444
0.4321 17.0 459 2.2039 0.3556
0.4791 18.0 486 2.3823 0.3778
0.484 19.0 513 1.4706 0.4222
0.4812 20.0 540 1.6485 0.4222
0.4413 21.0 567 1.7092 0.4
0.4306 22.0 594 1.8582 0.4
0.37 23.0 621 1.8653 0.3778
0.3048 24.0 648 1.6342 0.4444
0.3515 25.0 675 1.5211 0.4889
0.3558 26.0 702 1.9714 0.4222
0.2599 27.0 729 1.7243 0.4667
0.267 28.0 756 1.7049 0.5111
0.2625 29.0 783 2.1704 0.4222
0.2368 30.0 810 2.2942 0.4667
0.2036 31.0 837 2.0691 0.4667
0.1938 32.0 864 2.7340 0.4
0.1597 33.0 891 3.0661 0.4
0.1166 34.0 918 2.8536 0.4667
0.1248 35.0 945 2.9508 0.4444
0.121 36.0 972 3.2153 0.4667
0.0801 37.0 999 3.0021 0.4222
0.0529 38.0 1026 3.3247 0.4222
0.0434 39.0 1053 4.0394 0.4667
0.0599 40.0 1080 4.1062 0.4889
0.0437 41.0 1107 5.3485 0.4667
0.0045 42.0 1134 5.3122 0.4667
0.0368 43.0 1161 5.1937 0.4667
0.0032 44.0 1188 5.6803 0.4889
0.0061 45.0 1215 5.8620 0.4444
0.0035 46.0 1242 5.9016 0.4889
0.0011 47.0 1269 6.3136 0.4444
0.0277 48.0 1296 6.2816 0.4444
0.0067 49.0 1323 6.2787 0.4444
0.0372 50.0 1350 6.2787 0.4444

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0