metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_sgd_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.26666666666666666
hushem_5x_beit_base_sgd_00001_fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5367
- Accuracy: 0.2667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5006 | 1.0 | 27 | 1.5552 | 0.2667 |
1.5759 | 2.0 | 54 | 1.5543 | 0.2667 |
1.5707 | 3.0 | 81 | 1.5535 | 0.2667 |
1.578 | 4.0 | 108 | 1.5527 | 0.2667 |
1.5119 | 5.0 | 135 | 1.5520 | 0.2667 |
1.5352 | 6.0 | 162 | 1.5512 | 0.2667 |
1.5348 | 7.0 | 189 | 1.5504 | 0.2667 |
1.5693 | 8.0 | 216 | 1.5497 | 0.2667 |
1.5386 | 9.0 | 243 | 1.5490 | 0.2667 |
1.5189 | 10.0 | 270 | 1.5483 | 0.2667 |
1.5597 | 11.0 | 297 | 1.5477 | 0.2667 |
1.5706 | 12.0 | 324 | 1.5471 | 0.2667 |
1.5157 | 13.0 | 351 | 1.5465 | 0.2667 |
1.5457 | 14.0 | 378 | 1.5458 | 0.2667 |
1.5087 | 15.0 | 405 | 1.5453 | 0.2667 |
1.5323 | 16.0 | 432 | 1.5447 | 0.2667 |
1.5363 | 17.0 | 459 | 1.5442 | 0.2667 |
1.5615 | 18.0 | 486 | 1.5437 | 0.2667 |
1.5236 | 19.0 | 513 | 1.5433 | 0.2667 |
1.566 | 20.0 | 540 | 1.5428 | 0.2667 |
1.5446 | 21.0 | 567 | 1.5424 | 0.2667 |
1.5289 | 22.0 | 594 | 1.5419 | 0.2667 |
1.4823 | 23.0 | 621 | 1.5415 | 0.2667 |
1.5025 | 24.0 | 648 | 1.5411 | 0.2667 |
1.5362 | 25.0 | 675 | 1.5407 | 0.2667 |
1.5593 | 26.0 | 702 | 1.5404 | 0.2667 |
1.5515 | 27.0 | 729 | 1.5401 | 0.2667 |
1.5275 | 28.0 | 756 | 1.5397 | 0.2667 |
1.5171 | 29.0 | 783 | 1.5394 | 0.2667 |
1.5816 | 30.0 | 810 | 1.5391 | 0.2667 |
1.5294 | 31.0 | 837 | 1.5389 | 0.2667 |
1.5276 | 32.0 | 864 | 1.5386 | 0.2667 |
1.5584 | 33.0 | 891 | 1.5384 | 0.2667 |
1.5549 | 34.0 | 918 | 1.5382 | 0.2667 |
1.4864 | 35.0 | 945 | 1.5380 | 0.2667 |
1.4851 | 36.0 | 972 | 1.5378 | 0.2667 |
1.4835 | 37.0 | 999 | 1.5376 | 0.2667 |
1.5708 | 38.0 | 1026 | 1.5374 | 0.2667 |
1.5448 | 39.0 | 1053 | 1.5373 | 0.2667 |
1.4945 | 40.0 | 1080 | 1.5372 | 0.2667 |
1.486 | 41.0 | 1107 | 1.5371 | 0.2667 |
1.5082 | 42.0 | 1134 | 1.5370 | 0.2667 |
1.5323 | 43.0 | 1161 | 1.5369 | 0.2667 |
1.4965 | 44.0 | 1188 | 1.5368 | 0.2667 |
1.5407 | 45.0 | 1215 | 1.5368 | 0.2667 |
1.5084 | 46.0 | 1242 | 1.5368 | 0.2667 |
1.5191 | 47.0 | 1269 | 1.5367 | 0.2667 |
1.5617 | 48.0 | 1296 | 1.5367 | 0.2667 |
1.4992 | 49.0 | 1323 | 1.5367 | 0.2667 |
1.4782 | 50.0 | 1350 | 1.5367 | 0.2667 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0