hkivancoral's picture
End of training
8de3410
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.26666666666666666

hushem_5x_beit_base_sgd_0001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4185
  • Accuracy: 0.2667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4965 1.0 27 1.5474 0.2667
1.561 2.0 54 1.5386 0.2667
1.5488 3.0 81 1.5312 0.2667
1.5518 4.0 108 1.5243 0.2667
1.4809 5.0 135 1.5177 0.2667
1.4954 6.0 162 1.5111 0.2667
1.4888 7.0 189 1.5048 0.2667
1.5126 8.0 216 1.4993 0.2667
1.4812 9.0 243 1.4939 0.2667
1.4494 10.0 270 1.4885 0.2667
1.4861 11.0 297 1.4838 0.2667
1.491 12.0 324 1.4794 0.2667
1.4395 13.0 351 1.4751 0.2667
1.4636 14.0 378 1.4709 0.2667
1.4302 15.0 405 1.4673 0.2667
1.4414 16.0 432 1.4635 0.2667
1.4468 17.0 459 1.4602 0.2667
1.4709 18.0 486 1.4571 0.2667
1.4325 19.0 513 1.4542 0.2667
1.4645 20.0 540 1.4515 0.2667
1.4346 21.0 567 1.4487 0.2667
1.4324 22.0 594 1.4459 0.2667
1.3769 23.0 621 1.4436 0.2667
1.3945 24.0 648 1.4414 0.2667
1.415 25.0 675 1.4393 0.2667
1.4371 26.0 702 1.4375 0.2667
1.4355 27.0 729 1.4356 0.2667
1.3979 28.0 756 1.4341 0.2667
1.4061 29.0 783 1.4326 0.2667
1.4573 30.0 810 1.4309 0.2667
1.4027 31.0 837 1.4293 0.2667
1.4089 32.0 864 1.4280 0.2667
1.43 33.0 891 1.4268 0.2667
1.4098 34.0 918 1.4255 0.2667
1.3671 35.0 945 1.4244 0.2667
1.3717 36.0 972 1.4237 0.2667
1.3658 37.0 999 1.4228 0.2667
1.4295 38.0 1026 1.4220 0.2667
1.3909 39.0 1053 1.4214 0.2667
1.3599 40.0 1080 1.4209 0.2667
1.3564 41.0 1107 1.4202 0.2667
1.3635 42.0 1134 1.4197 0.2667
1.3875 43.0 1161 1.4194 0.2667
1.3551 44.0 1188 1.4191 0.2667
1.3825 45.0 1215 1.4188 0.2667
1.3691 46.0 1242 1.4187 0.2667
1.3678 47.0 1269 1.4186 0.2667
1.4155 48.0 1296 1.4185 0.2667
1.3778 49.0 1323 1.4185 0.2667
1.3456 50.0 1350 1.4185 0.2667

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0