MARBERT / README.md
hks1444's picture
End of training
1766b32 verified
|
raw
history blame
2.39 kB
metadata
library_name: transformers
base_model: UBC-NLP/MARBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: MARBERT
    results: []

MARBERT

This model is a fine-tuned version of UBC-NLP/MARBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0663
  • Precision: 0.4706
  • Recall: 0.6957
  • F1: 0.5614
  • Accuracy: 0.7165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 5 0.8651 0.0 0.0 0.0 0.625
No log 2.0 10 0.8085 0.0 0.0 0.0 0.6528
No log 3.0 15 0.7283 0.0 0.0 0.0 0.75
No log 4.0 20 0.6817 0.1429 0.1429 0.1429 0.7222
No log 5.0 25 0.6265 0.0 0.0 0.0 0.7361
No log 6.0 30 0.6199 0.2857 0.2857 0.2857 0.7778
No log 7.0 35 0.5375 0.0 0.0 0.0 0.7778
No log 8.0 40 0.5271 0.1667 0.1429 0.1538 0.8056
No log 9.0 45 0.5728 0.2857 0.2857 0.2857 0.7778
No log 10.0 50 0.5742 0.1429 0.1429 0.1429 0.7639

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0