T5Lae-Large-newloss
This model is a fine-tuned version of on the HuggingFaceFW/fineweb sample-350BT dataset. It achieves the following results on the evaluation set:
- Loss: 6.8585
- Accuracy: 0.0314
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 524288
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 7.1412 | 0.0095 | 5000 | 7.1369 | 0.0289 |
| 6.9628 | 0.0191 | 10000 | 6.9957 | 0.0287 |
| 6.9811 | 0.0286 | 15000 | 6.9385 | 0.0283 |
| 6.9319 | 0.0381 | 20000 | 6.9098 | 0.0289 |
| 6.8933 | 0.0477 | 25000 | 6.8881 | 0.0279 |
| 6.8351 | 0.0572 | 30000 | 6.8689 | 0.0281 |
| 6.9137 | 0.0668 | 35000 | 6.8726 | 0.0267 |
| 6.8591 | 0.0763 | 40000 | 6.8488 | 0.0294 |
| 6.87 | 0.0858 | 45000 | 6.8456 | 0.0285 |
| 6.923 | 0.0954 | 50000 | 6.8366 | 0.0300 |
| 6.8938 | 0.1049 | 55000 | 6.8524 | 0.0279 |
| 6.8661 | 0.1144 | 60000 | 6.8477 | 0.0291 |
| 6.818 | 0.1240 | 65000 | 6.8556 | 0.0295 |
| 6.8447 | 0.1335 | 70000 | 6.8708 | 0.0295 |
| 6.9407 | 0.1431 | 75000 | 6.9431 | 0.0285 |
| 6.8112 | 0.1526 | 80000 | 6.8968 | 0.0289 |
| 6.9326 | 0.1621 | 85000 | 6.8867 | 0.0303 |
| 6.93 | 0.1717 | 90000 | 6.9071 | 0.0289 |
| 6.8775 | 0.1812 | 95000 | 6.9182 | 0.0282 |
| 6.9303 | 0.1907 | 100000 | 6.9365 | 0.0298 |
| 6.9712 | 0.2003 | 105000 | 6.9177 | 0.0304 |
| 6.9708 | 0.2098 | 110000 | 6.9189 | 0.0295 |
| 6.9146 | 0.2193 | 115000 | 6.9231 | 0.0321 |
| 6.9805 | 0.2289 | 120000 | 6.9242 | 0.0300 |
| 6.9544 | 0.2384 | 125000 | 6.9080 | 0.0310 |
| 6.9911 | 0.2480 | 130000 | 6.9370 | 0.0300 |
| 6.9553 | 0.2575 | 135000 | 6.9171 | 0.0321 |
| 6.9499 | 0.2670 | 140000 | 6.9315 | 0.0313 |
| 6.9597 | 0.2766 | 145000 | 6.9353 | 0.0280 |
| 6.9236 | 0.2861 | 150000 | 6.9240 | 0.0313 |
| 6.9353 | 0.2956 | 155000 | 6.9222 | 0.0288 |
| 6.929 | 0.3052 | 160000 | 6.9323 | 0.0288 |
| 6.9524 | 0.3147 | 165000 | 6.9184 | 0.0301 |
| 7.0115 | 0.3242 | 170000 | 6.9191 | 0.0306 |
| 6.8984 | 0.3338 | 175000 | 6.9079 | 0.0307 |
| 7.0273 | 0.3433 | 180000 | 6.9077 | 0.0298 |
| 6.9773 | 0.3529 | 185000 | 6.9058 | 0.0309 |
| 6.9534 | 0.3624 | 190000 | 6.8999 | 0.0296 |
| 6.9413 | 0.3719 | 195000 | 6.9024 | 0.0297 |
| 6.9484 | 0.3815 | 200000 | 6.9112 | 0.0302 |
| 6.8938 | 0.3910 | 205000 | 6.9132 | 0.0311 |
| 6.9719 | 0.4005 | 210000 | 6.9025 | 0.0311 |
| 6.9633 | 0.4101 | 215000 | 6.9029 | 0.0307 |
| 6.9052 | 0.4196 | 220000 | 6.9112 | 0.0305 |
| 7.0124 | 0.4292 | 225000 | 6.9072 | 0.0312 |
| 6.9954 | 0.4387 | 230000 | 6.9048 | 0.0304 |
| 7.0005 | 0.4482 | 235000 | 6.9017 | 0.0289 |
| 6.9355 | 0.4578 | 240000 | 6.9006 | 0.0316 |
| 6.9119 | 0.4673 | 245000 | 6.8986 | 0.0309 |
| 6.9151 | 0.4768 | 250000 | 6.9139 | 0.0312 |
| 6.9032 | 0.4864 | 255000 | 6.9015 | 0.0310 |
| 6.9393 | 0.4959 | 260000 | 6.9001 | 0.0301 |
| 6.8839 | 0.5054 | 265000 | 6.9016 | 0.0301 |
| 6.927 | 0.5150 | 270000 | 6.9122 | 0.0302 |
| 6.979 | 0.5245 | 275000 | 6.9016 | 0.0299 |
| 6.9083 | 0.5341 | 280000 | 6.8971 | 0.0301 |
| 6.883 | 0.5436 | 285000 | 6.9037 | 0.0297 |
| 6.9126 | 0.5531 | 290000 | 6.8944 | 0.0309 |
| 6.9554 | 0.5627 | 295000 | 6.9077 | 0.0305 |
| 6.9157 | 0.5722 | 300000 | 6.8818 | 0.0315 |
| 6.9177 | 0.5817 | 305000 | 6.8835 | 0.0311 |
| 6.9511 | 0.5913 | 310000 | 6.8923 | 0.0318 |
| 6.9543 | 0.6008 | 315000 | 6.8898 | 0.0311 |
| 6.8546 | 0.6104 | 320000 | 6.8879 | 0.0302 |
| 6.8927 | 0.6199 | 325000 | 6.8771 | 0.0314 |
| 6.8991 | 0.6294 | 330000 | 6.8830 | 0.0303 |
| 6.9353 | 0.6390 | 335000 | 6.8958 | 0.0311 |
| 6.9027 | 0.6485 | 340000 | 6.8875 | 0.0309 |
| 6.9281 | 0.6580 | 345000 | 6.8875 | 0.0308 |
| 6.8576 | 0.6676 | 350000 | 6.9075 | 0.0304 |
| 6.8658 | 0.6771 | 355000 | 6.8905 | 0.0311 |
| 6.8994 | 0.6866 | 360000 | 6.8820 | 0.0305 |
| 6.8742 | 0.6962 | 365000 | 6.8769 | 0.0310 |
| 6.9569 | 0.7057 | 370000 | 6.8904 | 0.0304 |
| 6.8804 | 0.7153 | 375000 | 6.8841 | 0.0306 |
| 6.8935 | 0.7248 | 380000 | 6.8868 | 0.0301 |
| 6.878 | 0.7343 | 385000 | 6.8768 | 0.0307 |
| 6.9091 | 0.7439 | 390000 | 6.8738 | 0.0316 |
| 6.8698 | 0.7534 | 395000 | 6.8725 | 0.0307 |
| 6.8922 | 0.7629 | 400000 | 6.8776 | 0.0309 |
| 6.942 | 0.7725 | 405000 | 6.8744 | 0.0302 |
| 6.8491 | 0.7820 | 410000 | 6.8605 | 0.0312 |
| 6.9081 | 0.7915 | 415000 | 6.8673 | 0.0307 |
| 6.8476 | 0.8011 | 420000 | 6.8780 | 0.0312 |
| 6.881 | 0.8106 | 425000 | 6.8715 | 0.0313 |
| 6.8464 | 0.8202 | 430000 | 6.8736 | 0.0315 |
| 6.8448 | 0.8297 | 435000 | 6.8722 | 0.0309 |
| 6.8912 | 0.8392 | 440000 | 6.8771 | 0.0310 |
| 6.8407 | 0.8488 | 445000 | 6.8742 | 0.0304 |
| 6.7812 | 0.8583 | 450000 | 6.8768 | 0.0310 |
| 6.8851 | 0.8678 | 455000 | 6.8685 | 0.0311 |
| 6.8657 | 0.8774 | 460000 | 6.8623 | 0.0311 |
| 6.8474 | 0.8869 | 465000 | 6.8626 | 0.0309 |
| 6.8822 | 0.8965 | 470000 | 6.8656 | 0.0312 |
| 6.9379 | 0.9060 | 475000 | 6.8671 | 0.0312 |
| 6.8214 | 0.9155 | 480000 | 6.8672 | 0.0306 |
| 6.8276 | 0.9251 | 485000 | 6.8676 | 0.0310 |
| 6.8784 | 0.9346 | 490000 | 6.8655 | 0.0314 |
| 6.8923 | 0.9441 | 495000 | 6.8613 | 0.0313 |
| 6.8859 | 0.9537 | 500000 | 6.8621 | 0.0306 |
| 6.8558 | 1.0095 | 505000 | 6.8629 | 0.0308 |
| 6.7993 | 1.0191 | 510000 | 6.8625 | 0.0310 |
| 6.8821 | 1.0286 | 515000 | 6.8592 | 0.0313 |
| 6.8774 | 1.0381 | 520000 | 6.8593 | 0.0314 |
Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 3
Dataset used to train hrezaei/T5Lae-Large-newloss
Evaluation results
- Accuracy on HuggingFaceFW/fineweb sample-350BTself-reported0.031