rtdetr-r50-cppe5-finetune

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.8586
  • Map: 0.5282
  • Map 50: 0.6578
  • Map 75: 0.5509
  • Map Small: 0.2525
  • Map Medium: 0.502
  • Map Large: 0.6946
  • Mar 1: 0.2808
  • Mar 10: 0.617
  • Mar 100: 0.7372
  • Mar Small: 0.423
  • Mar Medium: 0.7109
  • Mar Large: 0.8923
  • Map Apple: 0.5218
  • Mar 100 Apple: 0.7284
  • Map Banana: 0.4594
  • Mar 100 Banana: 0.7377
  • Map Grapes: 0.3957
  • Mar 100 Grapes: 0.6437
  • Map Orange: 0.5229
  • Mar 100 Orange: 0.6667
  • Map Pineapple: 0.6214
  • Mar 100 Pineapple: 0.8087
  • Map Watermelon: 0.648
  • Mar 100 Watermelon: 0.8381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Apple Mar 100 Apple Map Banana Mar 100 Banana Map Grapes Mar 100 Grapes Map Orange Mar 100 Orange Map Pineapple Mar 100 Pineapple Map Watermelon Mar 100 Watermelon
42.2465 1.0 750 11.9797 0.3966 0.5058 0.417 0.1431 0.3331 0.5748 0.2443 0.5396 0.6893 0.3383 0.656 0.8619 0.3978 0.6735 0.3743 0.7125 0.2978 0.5641 0.4102 0.6402 0.4225 0.7685 0.4771 0.7773
15.4425 2.0 1500 10.7905 0.4461 0.5553 0.4689 0.1701 0.3998 0.6131 0.2634 0.5668 0.7036 0.3638 0.663 0.8779 0.4239 0.6906 0.437 0.7281 0.3405 0.6118 0.4262 0.6468 0.5435 0.7804 0.5053 0.7636
14.2856 3.0 2250 9.9898 0.4937 0.6229 0.5166 0.2073 0.4512 0.6644 0.2691 0.5859 0.7224 0.4119 0.6999 0.8802 0.4883 0.7015 0.4771 0.7369 0.3631 0.6162 0.4966 0.654 0.5767 0.7971 0.5607 0.8284
13.0156 4.0 3000 10.1385 0.5064 0.6308 0.5323 0.2148 0.4725 0.6794 0.274 0.5986 0.7294 0.4062 0.7103 0.8853 0.4728 0.7104 0.4569 0.738 0.3955 0.6261 0.5067 0.6602 0.6041 0.8011 0.6022 0.8403
12.4118 5.0 3750 10.0754 0.5084 0.6286 0.533 0.2254 0.4758 0.6844 0.2754 0.6012 0.7305 0.3992 0.7066 0.8904 0.4911 0.7103 0.488 0.7457 0.3875 0.6389 0.5065 0.6658 0.5897 0.7855 0.588 0.8366
11.7444 6.0 4500 10.1131 0.5119 0.6318 0.5379 0.209 0.477 0.6834 0.2742 0.6055 0.7302 0.399 0.6996 0.8898 0.4975 0.7185 0.4644 0.7266 0.391 0.6546 0.5165 0.6646 0.5963 0.7989 0.6059 0.8182
11.3657 7.0 5250 10.4886 0.4898 0.608 0.5144 0.2211 0.4666 0.6488 0.2736 0.5901 0.7258 0.3896 0.6946 0.8869 0.4952 0.7158 0.4309 0.7397 0.3444 0.6269 0.5001 0.6587 0.5822 0.7989 0.5859 0.8151
11.0681 8.0 6000 9.8240 0.5251 0.652 0.5511 0.2452 0.4984 0.6922 0.2809 0.6129 0.7389 0.4201 0.711 0.8945 0.5171 0.7279 0.471 0.7451 0.3935 0.6524 0.5214 0.6668 0.6087 0.8011 0.6388 0.8403
10.7525 9.0 6750 9.8244 0.5185 0.644 0.5425 0.2364 0.4832 0.6893 0.2799 0.6088 0.7399 0.4262 0.7159 0.8938 0.5137 0.7293 0.4548 0.753 0.3932 0.6471 0.5181 0.6659 0.6112 0.8047 0.6197 0.8395
10.5616 10.0 7500 9.8586 0.5282 0.6578 0.5509 0.2525 0.502 0.6946 0.2808 0.617 0.7372 0.423 0.7109 0.8923 0.5218 0.7284 0.4594 0.7377 0.3957 0.6437 0.5229 0.6667 0.6214 0.8087 0.648 0.8381

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
17
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hungnguyen2k4/rtdetr-r50-cppe5-finetune

Finetuned
(19)
this model