rtdetr-r50-fruits-best-finetune

This model is a fine-tuned version of hungnguyen2k4/rtdetr-r50-fruits-finetune on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.5094
  • Map: 0.56
  • Map 50: 0.6937
  • Map 75: 0.5776
  • Map Small: 0.1949
  • Map Medium: 0.518
  • Map Large: 0.7408
  • Mar 1: 0.2823
  • Mar 10: 0.6067
  • Mar 100: 0.691
  • Mar Small: 0.3327
  • Mar Medium: 0.6582
  • Mar Large: 0.8621
  • Map Apple: 0.5256
  • Mar 100 Apple: 0.6642
  • Map Banana: 0.5721
  • Mar 100 Banana: 0.7055
  • Map Grapes: 0.4636
  • Mar 100 Grapes: 0.5741
  • Map Orange: 0.5234
  • Mar 100 Orange: 0.6241
  • Map Pineapple: 0.597
  • Mar 100 Pineapple: 0.763
  • Map Watermelon: 0.6779
  • Mar 100 Watermelon: 0.8151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Apple Mar 100 Apple Map Banana Mar 100 Banana Map Grapes Mar 100 Grapes Map Orange Mar 100 Orange Map Pineapple Mar 100 Pineapple Map Watermelon Mar 100 Watermelon
8.9802 1.0 750 10.2552 0.5102 0.6327 0.5309 0.1779 0.4483 0.689 0.2711 0.5995 0.703 0.3508 0.6674 0.8701 0.4596 0.6818 0.5085 0.7333 0.4386 0.5938 0.5156 0.6365 0.5746 0.7674 0.5644 0.8054
9.4467 2.0 1500 9.9237 0.5301 0.6554 0.5475 0.1926 0.46 0.7148 0.2795 0.6066 0.7102 0.3641 0.6813 0.8684 0.5167 0.7076 0.5584 0.7422 0.4379 0.5966 0.5111 0.6434 0.5873 0.7656 0.5689 0.806
9.4137 3.0 2250 9.7983 0.5399 0.6637 0.5658 0.1989 0.4795 0.7172 0.277 0.6177 0.7166 0.3701 0.6859 0.8776 0.5137 0.6993 0.5505 0.7333 0.4545 0.6039 0.5209 0.6495 0.5943 0.7982 0.6057 0.8153
9.3953 4.0 3000 10.1332 0.5239 0.6451 0.5464 0.1602 0.4736 0.7052 0.2795 0.6113 0.7101 0.3349 0.6799 0.8771 0.483 0.6899 0.5301 0.7407 0.4575 0.6071 0.5091 0.6463 0.5666 0.763 0.597 0.8136
9.3615 5.0 3750 9.6674 0.5535 0.684 0.5745 0.2124 0.5145 0.7318 0.2819 0.6182 0.7232 0.392 0.7008 0.8817 0.5201 0.6972 0.5629 0.7518 0.4598 0.6126 0.5249 0.6475 0.5963 0.7953 0.6568 0.8349
9.2355 6.0 4500 9.8959 0.5419 0.6695 0.5637 0.2062 0.4845 0.72 0.2814 0.6134 0.7238 0.4109 0.6932 0.8811 0.5195 0.7062 0.5637 0.7518 0.4669 0.6104 0.5125 0.6432 0.5412 0.7819 0.6475 0.8494
9.0371 7.0 5250 9.9381 0.5411 0.6638 0.5561 0.1564 0.5012 0.7211 0.2798 0.6099 0.71 0.3452 0.6837 0.8758 0.5034 0.6823 0.5189 0.7155 0.4583 0.5972 0.5099 0.6389 0.6053 0.7866 0.6511 0.8392
9.0275 8.0 6000 9.4068 0.5398 0.6662 0.5585 0.1673 0.4756 0.7306 0.283 0.6124 0.7073 0.3566 0.6734 0.8773 0.5251 0.6952 0.5451 0.7243 0.4453 0.5946 0.5288 0.6487 0.6112 0.7851 0.5831 0.796
8.9213 9.0 6750 9.7777 0.5365 0.6644 0.5586 0.2017 0.4922 0.7154 0.2792 0.6065 0.7042 0.3564 0.6719 0.8685 0.5124 0.693 0.5489 0.7299 0.458 0.5908 0.5016 0.6388 0.5693 0.7486 0.6287 0.8244
8.8997 10.0 7500 9.8940 0.5253 0.6512 0.5436 0.1611 0.4795 0.711 0.2787 0.5984 0.6913 0.3029 0.6626 0.867 0.5099 0.6751 0.5214 0.7237 0.4552 0.5793 0.5025 0.632 0.5652 0.7391 0.5974 0.7983
8.6043 11.0 8250 9.9437 0.5429 0.6668 0.5626 0.1574 0.496 0.7266 0.2815 0.6093 0.7029 0.3175 0.6831 0.871 0.5006 0.6691 0.5486 0.7322 0.4618 0.5832 0.4991 0.6352 0.5871 0.7699 0.6601 0.8276
8.5683 12.0 9000 9.9150 0.5297 0.6495 0.5497 0.1795 0.4559 0.7177 0.283 0.6039 0.6987 0.3532 0.6622 0.8686 0.4845 0.6731 0.5474 0.7369 0.4566 0.5907 0.4888 0.6336 0.6042 0.7576 0.597 0.8
8.5717 13.0 9750 9.8528 0.5399 0.6721 0.5596 0.1919 0.4855 0.7202 0.2803 0.6082 0.6992 0.3338 0.6755 0.8645 0.5136 0.6784 0.5658 0.7251 0.4306 0.577 0.4964 0.6307 0.6144 0.7638 0.6189 0.8202
8.4495 14.0 10500 9.6450 0.552 0.6804 0.5729 0.2078 0.5048 0.7302 0.2822 0.6094 0.6978 0.3447 0.671 0.8689 0.5153 0.6589 0.5541 0.7315 0.4536 0.5798 0.5092 0.6214 0.6172 0.7652 0.6627 0.8301
8.3451 15.0 11250 9.3464 0.5612 0.6917 0.5846 0.2077 0.5249 0.7405 0.2798 0.6196 0.7104 0.3597 0.6819 0.8831 0.5172 0.6707 0.5539 0.7371 0.4811 0.6018 0.5209 0.6351 0.6242 0.7873 0.6698 0.8301
8.274 16.0 12000 9.7117 0.5317 0.6597 0.5485 0.1601 0.4758 0.7181 0.2795 0.5988 0.6881 0.3128 0.643 0.8701 0.499 0.6631 0.5431 0.7179 0.4489 0.5687 0.5012 0.627 0.5745 0.758 0.6235 0.7937
8.2786 17.0 12750 9.6160 0.5449 0.6734 0.5609 0.2112 0.4758 0.7345 0.2825 0.6104 0.7053 0.3634 0.6656 0.8763 0.5067 0.6791 0.5535 0.7272 0.4737 0.6055 0.5028 0.6313 0.5987 0.7775 0.6341 0.8114
8.1322 18.0 13500 9.4629 0.5463 0.6727 0.5638 0.1406 0.491 0.7388 0.2819 0.6098 0.7012 0.3403 0.6612 0.8782 0.5256 0.6853 0.553 0.7193 0.4608 0.5844 0.518 0.6393 0.5899 0.7739 0.6305 0.8048
8.1142 19.0 14250 9.7109 0.5513 0.6773 0.5721 0.1757 0.5084 0.7315 0.2859 0.6141 0.7009 0.3256 0.6721 0.8728 0.5089 0.6733 0.5738 0.7228 0.469 0.5832 0.5088 0.6353 0.6133 0.7638 0.6341 0.827
7.9492 20.0 15000 9.9189 0.5301 0.6593 0.5472 0.1661 0.4793 0.7152 0.2803 0.6005 0.6884 0.3141 0.6485 0.8686 0.5253 0.669 0.5427 0.719 0.454 0.5739 0.5045 0.6245 0.5588 0.7565 0.5953 0.7875
7.8828 21.0 15750 9.8609 0.5335 0.6614 0.5534 0.1531 0.4849 0.7191 0.2791 0.5933 0.6788 0.3044 0.6432 0.8568 0.4837 0.6479 0.5335 0.6856 0.45 0.5723 0.5108 0.6283 0.6042 0.7239 0.6188 0.8148
7.8113 22.0 16500 9.4807 0.562 0.6908 0.5828 0.1816 0.518 0.7435 0.2823 0.6169 0.6996 0.3349 0.6746 0.8679 0.5353 0.6785 0.5716 0.7219 0.4681 0.5809 0.5133 0.6293 0.6179 0.7583 0.6658 0.8284
7.7437 23.0 17250 9.4869 0.5643 0.6894 0.585 0.2046 0.5224 0.7447 0.2857 0.6174 0.7043 0.3415 0.6756 0.8743 0.5123 0.6742 0.5776 0.715 0.472 0.5979 0.5175 0.6362 0.6285 0.7786 0.6782 0.8239
7.6365 24.0 18000 9.5132 0.5577 0.6914 0.5776 0.2049 0.5196 0.7336 0.2813 0.61 0.6979 0.3404 0.6751 0.8627 0.5153 0.6679 0.5712 0.7193 0.4746 0.6039 0.5113 0.6308 0.6164 0.7518 0.6575 0.8136
7.6691 25.0 18750 9.4612 0.5627 0.6933 0.5838 0.1642 0.5221 0.7429 0.2854 0.6154 0.7005 0.3194 0.6779 0.8702 0.5288 0.6743 0.5821 0.7281 0.4649 0.5865 0.5177 0.629 0.616 0.7659 0.6668 0.8193
7.5961 26.0 19500 9.5376 0.5548 0.6797 0.5772 0.1797 0.5019 0.7392 0.2828 0.6088 0.6932 0.3324 0.6589 0.8668 0.5221 0.6691 0.5579 0.7114 0.4579 0.5793 0.5136 0.6315 0.6299 0.7645 0.6476 0.8034
7.5074 27.0 20250 9.4459 0.5537 0.682 0.5735 0.1985 0.4972 0.74 0.2859 0.6099 0.7012 0.3442 0.6637 0.8741 0.5171 0.6738 0.5662 0.7304 0.4612 0.5839 0.5156 0.6381 0.6179 0.7746 0.6439 0.8062
7.4 28.0 21000 9.4658 0.5592 0.692 0.5825 0.1978 0.5154 0.7421 0.2813 0.6091 0.6976 0.35 0.6598 0.8716 0.5455 0.6847 0.5658 0.7181 0.4629 0.5851 0.5205 0.6289 0.5959 0.7486 0.6645 0.8202
7.4215 29.0 21750 9.5392 0.5551 0.6834 0.5757 0.1945 0.5108 0.7364 0.2841 0.6065 0.6927 0.3198 0.6547 0.8717 0.5129 0.6606 0.5579 0.716 0.4637 0.5855 0.5227 0.6323 0.6076 0.7507 0.6656 0.8114
7.2585 30.0 22500 9.6376 0.5505 0.6785 0.571 0.1768 0.5061 0.7322 0.2841 0.6026 0.6934 0.2995 0.658 0.8737 0.5121 0.6655 0.5598 0.7161 0.4644 0.5855 0.5103 0.6324 0.6157 0.7533 0.6406 0.808
7.2941 31.0 23250 9.6823 0.5497 0.681 0.5691 0.1685 0.5058 0.7295 0.2849 0.6036 0.6901 0.3233 0.6551 0.8597 0.5186 0.6665 0.5577 0.7138 0.4591 0.5724 0.5151 0.6313 0.6099 0.7529 0.6381 0.8037
7.0969 32.0 24000 9.6241 0.5464 0.6763 0.5669 0.1808 0.5157 0.7223 0.2828 0.6014 0.6868 0.3059 0.6537 0.8605 0.5246 0.6569 0.5555 0.7201 0.4504 0.5723 0.5203 0.6258 0.5769 0.737 0.6507 0.8085
7.1223 33.0 24750 9.6269 0.555 0.6841 0.5733 0.1821 0.5169 0.7369 0.2844 0.6061 0.6928 0.3247 0.6633 0.8626 0.5289 0.6719 0.5499 0.7106 0.4566 0.5777 0.5218 0.6309 0.6137 0.7601 0.659 0.8054
7.0158 34.0 25500 9.5125 0.5589 0.6938 0.5775 0.1936 0.5152 0.739 0.2847 0.6051 0.6955 0.3302 0.6659 0.8629 0.526 0.6664 0.5607 0.7211 0.4676 0.5836 0.5266 0.633 0.6074 0.7591 0.6649 0.8099
7.0803 35.0 26250 9.5032 0.5569 0.6928 0.5761 0.2078 0.5163 0.7342 0.2834 0.6008 0.6875 0.3215 0.6527 0.8594 0.5328 0.6685 0.5546 0.709 0.4635 0.5736 0.5236 0.6312 0.6178 0.754 0.6492 0.7886
6.8887 36.0 27000 9.4894 0.5624 0.6953 0.5828 0.1818 0.5235 0.7405 0.2843 0.608 0.6914 0.3222 0.662 0.8612 0.5312 0.6578 0.5696 0.7204 0.4599 0.5701 0.5252 0.6336 0.6144 0.754 0.6741 0.8128
6.9192 37.0 27750 9.5090 0.5548 0.6878 0.5717 0.1704 0.5122 0.7391 0.2816 0.6042 0.6921 0.319 0.6578 0.8661 0.515 0.6663 0.5599 0.7032 0.4583 0.5732 0.523 0.6273 0.5961 0.7609 0.6766 0.8216
6.8154 38.0 28500 9.5129 0.5597 0.6905 0.5774 0.1902 0.5143 0.744 0.2829 0.6057 0.6907 0.3269 0.6557 0.8652 0.5164 0.6621 0.5637 0.7096 0.4607 0.5719 0.5222 0.6327 0.6143 0.7507 0.6809 0.8173
6.8066 39.0 29250 9.5753 0.5585 0.6906 0.5764 0.2098 0.5146 0.7387 0.2837 0.6081 0.6916 0.3375 0.6544 0.865 0.5191 0.6669 0.5705 0.7114 0.4619 0.5713 0.52 0.6255 0.6129 0.7518 0.6666 0.8224
6.7741 40.0 30000 9.5409 0.5607 0.6907 0.5805 0.1992 0.5156 0.7419 0.2842 0.6088 0.6948 0.3341 0.6649 0.864 0.5274 0.6661 0.575 0.7163 0.4604 0.578 0.5173 0.6294 0.609 0.7605 0.6749 0.8182
6.7611 41.0 30750 9.5476 0.5569 0.6878 0.575 0.1831 0.515 0.7386 0.2817 0.6049 0.6918 0.3338 0.6525 0.8654 0.5189 0.664 0.5558 0.709 0.4609 0.5647 0.5151 0.6252 0.6099 0.7732 0.6809 0.8148
6.6373 42.0 31500 9.4503 0.5628 0.6952 0.5825 0.2107 0.5223 0.7411 0.2836 0.6067 0.6938 0.3276 0.6612 0.8651 0.5315 0.6721 0.5631 0.7087 0.4663 0.5747 0.5246 0.6267 0.6143 0.7663 0.677 0.8142
6.5628 43.0 32250 9.5278 0.5552 0.6846 0.5736 0.1843 0.5114 0.737 0.2815 0.6011 0.6856 0.3069 0.6495 0.8626 0.5213 0.6557 0.5535 0.6878 0.4637 0.5787 0.521 0.6232 0.5972 0.7605 0.6746 0.8074
6.4969 44.0 33000 9.6008 0.5554 0.6888 0.5717 0.1976 0.5064 0.7372 0.2823 0.6013 0.6838 0.3111 0.6463 0.8591 0.5137 0.6526 0.5664 0.7061 0.4614 0.5718 0.5187 0.6212 0.599 0.7533 0.673 0.798
6.5122 45.0 33750 9.4664 0.5618 0.6949 0.5807 0.2163 0.5212 0.7388 0.2834 0.6076 0.6923 0.3291 0.6605 0.8622 0.5301 0.6667 0.5712 0.7109 0.4631 0.5776 0.5221 0.6256 0.6052 0.7562 0.6789 0.8168
6.4897 46.0 34500 9.5417 0.5593 0.6929 0.5762 0.2063 0.5162 0.739 0.2815 0.6068 0.6903 0.3211 0.6569 0.8611 0.5269 0.6629 0.5701 0.7084 0.4597 0.5753 0.5228 0.6269 0.6029 0.762 0.6735 0.8065
6.3466 47.0 35250 9.5257 0.5597 0.6953 0.5779 0.2089 0.5169 0.7385 0.2826 0.6066 0.6925 0.3219 0.6631 0.8611 0.5309 0.6672 0.5739 0.7182 0.4596 0.575 0.5218 0.6249 0.5959 0.758 0.6759 0.8116
6.3352 48.0 36000 9.4974 0.5596 0.6942 0.577 0.1999 0.5202 0.7374 0.2827 0.6057 0.689 0.3277 0.6579 0.8603 0.5275 0.6662 0.5703 0.7085 0.4627 0.5724 0.5259 0.6254 0.5982 0.7536 0.6727 0.808
6.5218 49.0 36750 9.5474 0.5572 0.6902 0.5761 0.1947 0.5148 0.7373 0.2813 0.6053 0.6865 0.3254 0.6528 0.8579 0.519 0.6596 0.5672 0.7059 0.4615 0.5703 0.5222 0.6245 0.5966 0.7529 0.6766 0.806
6.2957 50.0 37500 9.5094 0.56 0.6937 0.5776 0.1949 0.518 0.7408 0.2823 0.6067 0.691 0.3327 0.6582 0.8621 0.5256 0.6642 0.5721 0.7055 0.4636 0.5741 0.5234 0.6241 0.597 0.763 0.6779 0.8151

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hungnguyen2k4/rtdetr-r50-fruits-best-finetune

Finetuned
(1)
this model