rtdetr-r50-fruits-best-finetune
This model is a fine-tuned version of hungnguyen2k4/rtdetr-r50-fruits-finetune on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 9.5094
- Map: 0.56
- Map 50: 0.6937
- Map 75: 0.5776
- Map Small: 0.1949
- Map Medium: 0.518
- Map Large: 0.7408
- Mar 1: 0.2823
- Mar 10: 0.6067
- Mar 100: 0.691
- Mar Small: 0.3327
- Mar Medium: 0.6582
- Mar Large: 0.8621
- Map Apple: 0.5256
- Mar 100 Apple: 0.6642
- Map Banana: 0.5721
- Mar 100 Banana: 0.7055
- Map Grapes: 0.4636
- Mar 100 Grapes: 0.5741
- Map Orange: 0.5234
- Mar 100 Orange: 0.6241
- Map Pineapple: 0.597
- Mar 100 Pineapple: 0.763
- Map Watermelon: 0.6779
- Mar 100 Watermelon: 0.8151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Apple | Mar 100 Apple | Map Banana | Mar 100 Banana | Map Grapes | Mar 100 Grapes | Map Orange | Mar 100 Orange | Map Pineapple | Mar 100 Pineapple | Map Watermelon | Mar 100 Watermelon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.9802 | 1.0 | 750 | 10.2552 | 0.5102 | 0.6327 | 0.5309 | 0.1779 | 0.4483 | 0.689 | 0.2711 | 0.5995 | 0.703 | 0.3508 | 0.6674 | 0.8701 | 0.4596 | 0.6818 | 0.5085 | 0.7333 | 0.4386 | 0.5938 | 0.5156 | 0.6365 | 0.5746 | 0.7674 | 0.5644 | 0.8054 |
9.4467 | 2.0 | 1500 | 9.9237 | 0.5301 | 0.6554 | 0.5475 | 0.1926 | 0.46 | 0.7148 | 0.2795 | 0.6066 | 0.7102 | 0.3641 | 0.6813 | 0.8684 | 0.5167 | 0.7076 | 0.5584 | 0.7422 | 0.4379 | 0.5966 | 0.5111 | 0.6434 | 0.5873 | 0.7656 | 0.5689 | 0.806 |
9.4137 | 3.0 | 2250 | 9.7983 | 0.5399 | 0.6637 | 0.5658 | 0.1989 | 0.4795 | 0.7172 | 0.277 | 0.6177 | 0.7166 | 0.3701 | 0.6859 | 0.8776 | 0.5137 | 0.6993 | 0.5505 | 0.7333 | 0.4545 | 0.6039 | 0.5209 | 0.6495 | 0.5943 | 0.7982 | 0.6057 | 0.8153 |
9.3953 | 4.0 | 3000 | 10.1332 | 0.5239 | 0.6451 | 0.5464 | 0.1602 | 0.4736 | 0.7052 | 0.2795 | 0.6113 | 0.7101 | 0.3349 | 0.6799 | 0.8771 | 0.483 | 0.6899 | 0.5301 | 0.7407 | 0.4575 | 0.6071 | 0.5091 | 0.6463 | 0.5666 | 0.763 | 0.597 | 0.8136 |
9.3615 | 5.0 | 3750 | 9.6674 | 0.5535 | 0.684 | 0.5745 | 0.2124 | 0.5145 | 0.7318 | 0.2819 | 0.6182 | 0.7232 | 0.392 | 0.7008 | 0.8817 | 0.5201 | 0.6972 | 0.5629 | 0.7518 | 0.4598 | 0.6126 | 0.5249 | 0.6475 | 0.5963 | 0.7953 | 0.6568 | 0.8349 |
9.2355 | 6.0 | 4500 | 9.8959 | 0.5419 | 0.6695 | 0.5637 | 0.2062 | 0.4845 | 0.72 | 0.2814 | 0.6134 | 0.7238 | 0.4109 | 0.6932 | 0.8811 | 0.5195 | 0.7062 | 0.5637 | 0.7518 | 0.4669 | 0.6104 | 0.5125 | 0.6432 | 0.5412 | 0.7819 | 0.6475 | 0.8494 |
9.0371 | 7.0 | 5250 | 9.9381 | 0.5411 | 0.6638 | 0.5561 | 0.1564 | 0.5012 | 0.7211 | 0.2798 | 0.6099 | 0.71 | 0.3452 | 0.6837 | 0.8758 | 0.5034 | 0.6823 | 0.5189 | 0.7155 | 0.4583 | 0.5972 | 0.5099 | 0.6389 | 0.6053 | 0.7866 | 0.6511 | 0.8392 |
9.0275 | 8.0 | 6000 | 9.4068 | 0.5398 | 0.6662 | 0.5585 | 0.1673 | 0.4756 | 0.7306 | 0.283 | 0.6124 | 0.7073 | 0.3566 | 0.6734 | 0.8773 | 0.5251 | 0.6952 | 0.5451 | 0.7243 | 0.4453 | 0.5946 | 0.5288 | 0.6487 | 0.6112 | 0.7851 | 0.5831 | 0.796 |
8.9213 | 9.0 | 6750 | 9.7777 | 0.5365 | 0.6644 | 0.5586 | 0.2017 | 0.4922 | 0.7154 | 0.2792 | 0.6065 | 0.7042 | 0.3564 | 0.6719 | 0.8685 | 0.5124 | 0.693 | 0.5489 | 0.7299 | 0.458 | 0.5908 | 0.5016 | 0.6388 | 0.5693 | 0.7486 | 0.6287 | 0.8244 |
8.8997 | 10.0 | 7500 | 9.8940 | 0.5253 | 0.6512 | 0.5436 | 0.1611 | 0.4795 | 0.711 | 0.2787 | 0.5984 | 0.6913 | 0.3029 | 0.6626 | 0.867 | 0.5099 | 0.6751 | 0.5214 | 0.7237 | 0.4552 | 0.5793 | 0.5025 | 0.632 | 0.5652 | 0.7391 | 0.5974 | 0.7983 |
8.6043 | 11.0 | 8250 | 9.9437 | 0.5429 | 0.6668 | 0.5626 | 0.1574 | 0.496 | 0.7266 | 0.2815 | 0.6093 | 0.7029 | 0.3175 | 0.6831 | 0.871 | 0.5006 | 0.6691 | 0.5486 | 0.7322 | 0.4618 | 0.5832 | 0.4991 | 0.6352 | 0.5871 | 0.7699 | 0.6601 | 0.8276 |
8.5683 | 12.0 | 9000 | 9.9150 | 0.5297 | 0.6495 | 0.5497 | 0.1795 | 0.4559 | 0.7177 | 0.283 | 0.6039 | 0.6987 | 0.3532 | 0.6622 | 0.8686 | 0.4845 | 0.6731 | 0.5474 | 0.7369 | 0.4566 | 0.5907 | 0.4888 | 0.6336 | 0.6042 | 0.7576 | 0.597 | 0.8 |
8.5717 | 13.0 | 9750 | 9.8528 | 0.5399 | 0.6721 | 0.5596 | 0.1919 | 0.4855 | 0.7202 | 0.2803 | 0.6082 | 0.6992 | 0.3338 | 0.6755 | 0.8645 | 0.5136 | 0.6784 | 0.5658 | 0.7251 | 0.4306 | 0.577 | 0.4964 | 0.6307 | 0.6144 | 0.7638 | 0.6189 | 0.8202 |
8.4495 | 14.0 | 10500 | 9.6450 | 0.552 | 0.6804 | 0.5729 | 0.2078 | 0.5048 | 0.7302 | 0.2822 | 0.6094 | 0.6978 | 0.3447 | 0.671 | 0.8689 | 0.5153 | 0.6589 | 0.5541 | 0.7315 | 0.4536 | 0.5798 | 0.5092 | 0.6214 | 0.6172 | 0.7652 | 0.6627 | 0.8301 |
8.3451 | 15.0 | 11250 | 9.3464 | 0.5612 | 0.6917 | 0.5846 | 0.2077 | 0.5249 | 0.7405 | 0.2798 | 0.6196 | 0.7104 | 0.3597 | 0.6819 | 0.8831 | 0.5172 | 0.6707 | 0.5539 | 0.7371 | 0.4811 | 0.6018 | 0.5209 | 0.6351 | 0.6242 | 0.7873 | 0.6698 | 0.8301 |
8.274 | 16.0 | 12000 | 9.7117 | 0.5317 | 0.6597 | 0.5485 | 0.1601 | 0.4758 | 0.7181 | 0.2795 | 0.5988 | 0.6881 | 0.3128 | 0.643 | 0.8701 | 0.499 | 0.6631 | 0.5431 | 0.7179 | 0.4489 | 0.5687 | 0.5012 | 0.627 | 0.5745 | 0.758 | 0.6235 | 0.7937 |
8.2786 | 17.0 | 12750 | 9.6160 | 0.5449 | 0.6734 | 0.5609 | 0.2112 | 0.4758 | 0.7345 | 0.2825 | 0.6104 | 0.7053 | 0.3634 | 0.6656 | 0.8763 | 0.5067 | 0.6791 | 0.5535 | 0.7272 | 0.4737 | 0.6055 | 0.5028 | 0.6313 | 0.5987 | 0.7775 | 0.6341 | 0.8114 |
8.1322 | 18.0 | 13500 | 9.4629 | 0.5463 | 0.6727 | 0.5638 | 0.1406 | 0.491 | 0.7388 | 0.2819 | 0.6098 | 0.7012 | 0.3403 | 0.6612 | 0.8782 | 0.5256 | 0.6853 | 0.553 | 0.7193 | 0.4608 | 0.5844 | 0.518 | 0.6393 | 0.5899 | 0.7739 | 0.6305 | 0.8048 |
8.1142 | 19.0 | 14250 | 9.7109 | 0.5513 | 0.6773 | 0.5721 | 0.1757 | 0.5084 | 0.7315 | 0.2859 | 0.6141 | 0.7009 | 0.3256 | 0.6721 | 0.8728 | 0.5089 | 0.6733 | 0.5738 | 0.7228 | 0.469 | 0.5832 | 0.5088 | 0.6353 | 0.6133 | 0.7638 | 0.6341 | 0.827 |
7.9492 | 20.0 | 15000 | 9.9189 | 0.5301 | 0.6593 | 0.5472 | 0.1661 | 0.4793 | 0.7152 | 0.2803 | 0.6005 | 0.6884 | 0.3141 | 0.6485 | 0.8686 | 0.5253 | 0.669 | 0.5427 | 0.719 | 0.454 | 0.5739 | 0.5045 | 0.6245 | 0.5588 | 0.7565 | 0.5953 | 0.7875 |
7.8828 | 21.0 | 15750 | 9.8609 | 0.5335 | 0.6614 | 0.5534 | 0.1531 | 0.4849 | 0.7191 | 0.2791 | 0.5933 | 0.6788 | 0.3044 | 0.6432 | 0.8568 | 0.4837 | 0.6479 | 0.5335 | 0.6856 | 0.45 | 0.5723 | 0.5108 | 0.6283 | 0.6042 | 0.7239 | 0.6188 | 0.8148 |
7.8113 | 22.0 | 16500 | 9.4807 | 0.562 | 0.6908 | 0.5828 | 0.1816 | 0.518 | 0.7435 | 0.2823 | 0.6169 | 0.6996 | 0.3349 | 0.6746 | 0.8679 | 0.5353 | 0.6785 | 0.5716 | 0.7219 | 0.4681 | 0.5809 | 0.5133 | 0.6293 | 0.6179 | 0.7583 | 0.6658 | 0.8284 |
7.7437 | 23.0 | 17250 | 9.4869 | 0.5643 | 0.6894 | 0.585 | 0.2046 | 0.5224 | 0.7447 | 0.2857 | 0.6174 | 0.7043 | 0.3415 | 0.6756 | 0.8743 | 0.5123 | 0.6742 | 0.5776 | 0.715 | 0.472 | 0.5979 | 0.5175 | 0.6362 | 0.6285 | 0.7786 | 0.6782 | 0.8239 |
7.6365 | 24.0 | 18000 | 9.5132 | 0.5577 | 0.6914 | 0.5776 | 0.2049 | 0.5196 | 0.7336 | 0.2813 | 0.61 | 0.6979 | 0.3404 | 0.6751 | 0.8627 | 0.5153 | 0.6679 | 0.5712 | 0.7193 | 0.4746 | 0.6039 | 0.5113 | 0.6308 | 0.6164 | 0.7518 | 0.6575 | 0.8136 |
7.6691 | 25.0 | 18750 | 9.4612 | 0.5627 | 0.6933 | 0.5838 | 0.1642 | 0.5221 | 0.7429 | 0.2854 | 0.6154 | 0.7005 | 0.3194 | 0.6779 | 0.8702 | 0.5288 | 0.6743 | 0.5821 | 0.7281 | 0.4649 | 0.5865 | 0.5177 | 0.629 | 0.616 | 0.7659 | 0.6668 | 0.8193 |
7.5961 | 26.0 | 19500 | 9.5376 | 0.5548 | 0.6797 | 0.5772 | 0.1797 | 0.5019 | 0.7392 | 0.2828 | 0.6088 | 0.6932 | 0.3324 | 0.6589 | 0.8668 | 0.5221 | 0.6691 | 0.5579 | 0.7114 | 0.4579 | 0.5793 | 0.5136 | 0.6315 | 0.6299 | 0.7645 | 0.6476 | 0.8034 |
7.5074 | 27.0 | 20250 | 9.4459 | 0.5537 | 0.682 | 0.5735 | 0.1985 | 0.4972 | 0.74 | 0.2859 | 0.6099 | 0.7012 | 0.3442 | 0.6637 | 0.8741 | 0.5171 | 0.6738 | 0.5662 | 0.7304 | 0.4612 | 0.5839 | 0.5156 | 0.6381 | 0.6179 | 0.7746 | 0.6439 | 0.8062 |
7.4 | 28.0 | 21000 | 9.4658 | 0.5592 | 0.692 | 0.5825 | 0.1978 | 0.5154 | 0.7421 | 0.2813 | 0.6091 | 0.6976 | 0.35 | 0.6598 | 0.8716 | 0.5455 | 0.6847 | 0.5658 | 0.7181 | 0.4629 | 0.5851 | 0.5205 | 0.6289 | 0.5959 | 0.7486 | 0.6645 | 0.8202 |
7.4215 | 29.0 | 21750 | 9.5392 | 0.5551 | 0.6834 | 0.5757 | 0.1945 | 0.5108 | 0.7364 | 0.2841 | 0.6065 | 0.6927 | 0.3198 | 0.6547 | 0.8717 | 0.5129 | 0.6606 | 0.5579 | 0.716 | 0.4637 | 0.5855 | 0.5227 | 0.6323 | 0.6076 | 0.7507 | 0.6656 | 0.8114 |
7.2585 | 30.0 | 22500 | 9.6376 | 0.5505 | 0.6785 | 0.571 | 0.1768 | 0.5061 | 0.7322 | 0.2841 | 0.6026 | 0.6934 | 0.2995 | 0.658 | 0.8737 | 0.5121 | 0.6655 | 0.5598 | 0.7161 | 0.4644 | 0.5855 | 0.5103 | 0.6324 | 0.6157 | 0.7533 | 0.6406 | 0.808 |
7.2941 | 31.0 | 23250 | 9.6823 | 0.5497 | 0.681 | 0.5691 | 0.1685 | 0.5058 | 0.7295 | 0.2849 | 0.6036 | 0.6901 | 0.3233 | 0.6551 | 0.8597 | 0.5186 | 0.6665 | 0.5577 | 0.7138 | 0.4591 | 0.5724 | 0.5151 | 0.6313 | 0.6099 | 0.7529 | 0.6381 | 0.8037 |
7.0969 | 32.0 | 24000 | 9.6241 | 0.5464 | 0.6763 | 0.5669 | 0.1808 | 0.5157 | 0.7223 | 0.2828 | 0.6014 | 0.6868 | 0.3059 | 0.6537 | 0.8605 | 0.5246 | 0.6569 | 0.5555 | 0.7201 | 0.4504 | 0.5723 | 0.5203 | 0.6258 | 0.5769 | 0.737 | 0.6507 | 0.8085 |
7.1223 | 33.0 | 24750 | 9.6269 | 0.555 | 0.6841 | 0.5733 | 0.1821 | 0.5169 | 0.7369 | 0.2844 | 0.6061 | 0.6928 | 0.3247 | 0.6633 | 0.8626 | 0.5289 | 0.6719 | 0.5499 | 0.7106 | 0.4566 | 0.5777 | 0.5218 | 0.6309 | 0.6137 | 0.7601 | 0.659 | 0.8054 |
7.0158 | 34.0 | 25500 | 9.5125 | 0.5589 | 0.6938 | 0.5775 | 0.1936 | 0.5152 | 0.739 | 0.2847 | 0.6051 | 0.6955 | 0.3302 | 0.6659 | 0.8629 | 0.526 | 0.6664 | 0.5607 | 0.7211 | 0.4676 | 0.5836 | 0.5266 | 0.633 | 0.6074 | 0.7591 | 0.6649 | 0.8099 |
7.0803 | 35.0 | 26250 | 9.5032 | 0.5569 | 0.6928 | 0.5761 | 0.2078 | 0.5163 | 0.7342 | 0.2834 | 0.6008 | 0.6875 | 0.3215 | 0.6527 | 0.8594 | 0.5328 | 0.6685 | 0.5546 | 0.709 | 0.4635 | 0.5736 | 0.5236 | 0.6312 | 0.6178 | 0.754 | 0.6492 | 0.7886 |
6.8887 | 36.0 | 27000 | 9.4894 | 0.5624 | 0.6953 | 0.5828 | 0.1818 | 0.5235 | 0.7405 | 0.2843 | 0.608 | 0.6914 | 0.3222 | 0.662 | 0.8612 | 0.5312 | 0.6578 | 0.5696 | 0.7204 | 0.4599 | 0.5701 | 0.5252 | 0.6336 | 0.6144 | 0.754 | 0.6741 | 0.8128 |
6.9192 | 37.0 | 27750 | 9.5090 | 0.5548 | 0.6878 | 0.5717 | 0.1704 | 0.5122 | 0.7391 | 0.2816 | 0.6042 | 0.6921 | 0.319 | 0.6578 | 0.8661 | 0.515 | 0.6663 | 0.5599 | 0.7032 | 0.4583 | 0.5732 | 0.523 | 0.6273 | 0.5961 | 0.7609 | 0.6766 | 0.8216 |
6.8154 | 38.0 | 28500 | 9.5129 | 0.5597 | 0.6905 | 0.5774 | 0.1902 | 0.5143 | 0.744 | 0.2829 | 0.6057 | 0.6907 | 0.3269 | 0.6557 | 0.8652 | 0.5164 | 0.6621 | 0.5637 | 0.7096 | 0.4607 | 0.5719 | 0.5222 | 0.6327 | 0.6143 | 0.7507 | 0.6809 | 0.8173 |
6.8066 | 39.0 | 29250 | 9.5753 | 0.5585 | 0.6906 | 0.5764 | 0.2098 | 0.5146 | 0.7387 | 0.2837 | 0.6081 | 0.6916 | 0.3375 | 0.6544 | 0.865 | 0.5191 | 0.6669 | 0.5705 | 0.7114 | 0.4619 | 0.5713 | 0.52 | 0.6255 | 0.6129 | 0.7518 | 0.6666 | 0.8224 |
6.7741 | 40.0 | 30000 | 9.5409 | 0.5607 | 0.6907 | 0.5805 | 0.1992 | 0.5156 | 0.7419 | 0.2842 | 0.6088 | 0.6948 | 0.3341 | 0.6649 | 0.864 | 0.5274 | 0.6661 | 0.575 | 0.7163 | 0.4604 | 0.578 | 0.5173 | 0.6294 | 0.609 | 0.7605 | 0.6749 | 0.8182 |
6.7611 | 41.0 | 30750 | 9.5476 | 0.5569 | 0.6878 | 0.575 | 0.1831 | 0.515 | 0.7386 | 0.2817 | 0.6049 | 0.6918 | 0.3338 | 0.6525 | 0.8654 | 0.5189 | 0.664 | 0.5558 | 0.709 | 0.4609 | 0.5647 | 0.5151 | 0.6252 | 0.6099 | 0.7732 | 0.6809 | 0.8148 |
6.6373 | 42.0 | 31500 | 9.4503 | 0.5628 | 0.6952 | 0.5825 | 0.2107 | 0.5223 | 0.7411 | 0.2836 | 0.6067 | 0.6938 | 0.3276 | 0.6612 | 0.8651 | 0.5315 | 0.6721 | 0.5631 | 0.7087 | 0.4663 | 0.5747 | 0.5246 | 0.6267 | 0.6143 | 0.7663 | 0.677 | 0.8142 |
6.5628 | 43.0 | 32250 | 9.5278 | 0.5552 | 0.6846 | 0.5736 | 0.1843 | 0.5114 | 0.737 | 0.2815 | 0.6011 | 0.6856 | 0.3069 | 0.6495 | 0.8626 | 0.5213 | 0.6557 | 0.5535 | 0.6878 | 0.4637 | 0.5787 | 0.521 | 0.6232 | 0.5972 | 0.7605 | 0.6746 | 0.8074 |
6.4969 | 44.0 | 33000 | 9.6008 | 0.5554 | 0.6888 | 0.5717 | 0.1976 | 0.5064 | 0.7372 | 0.2823 | 0.6013 | 0.6838 | 0.3111 | 0.6463 | 0.8591 | 0.5137 | 0.6526 | 0.5664 | 0.7061 | 0.4614 | 0.5718 | 0.5187 | 0.6212 | 0.599 | 0.7533 | 0.673 | 0.798 |
6.5122 | 45.0 | 33750 | 9.4664 | 0.5618 | 0.6949 | 0.5807 | 0.2163 | 0.5212 | 0.7388 | 0.2834 | 0.6076 | 0.6923 | 0.3291 | 0.6605 | 0.8622 | 0.5301 | 0.6667 | 0.5712 | 0.7109 | 0.4631 | 0.5776 | 0.5221 | 0.6256 | 0.6052 | 0.7562 | 0.6789 | 0.8168 |
6.4897 | 46.0 | 34500 | 9.5417 | 0.5593 | 0.6929 | 0.5762 | 0.2063 | 0.5162 | 0.739 | 0.2815 | 0.6068 | 0.6903 | 0.3211 | 0.6569 | 0.8611 | 0.5269 | 0.6629 | 0.5701 | 0.7084 | 0.4597 | 0.5753 | 0.5228 | 0.6269 | 0.6029 | 0.762 | 0.6735 | 0.8065 |
6.3466 | 47.0 | 35250 | 9.5257 | 0.5597 | 0.6953 | 0.5779 | 0.2089 | 0.5169 | 0.7385 | 0.2826 | 0.6066 | 0.6925 | 0.3219 | 0.6631 | 0.8611 | 0.5309 | 0.6672 | 0.5739 | 0.7182 | 0.4596 | 0.575 | 0.5218 | 0.6249 | 0.5959 | 0.758 | 0.6759 | 0.8116 |
6.3352 | 48.0 | 36000 | 9.4974 | 0.5596 | 0.6942 | 0.577 | 0.1999 | 0.5202 | 0.7374 | 0.2827 | 0.6057 | 0.689 | 0.3277 | 0.6579 | 0.8603 | 0.5275 | 0.6662 | 0.5703 | 0.7085 | 0.4627 | 0.5724 | 0.5259 | 0.6254 | 0.5982 | 0.7536 | 0.6727 | 0.808 |
6.5218 | 49.0 | 36750 | 9.5474 | 0.5572 | 0.6902 | 0.5761 | 0.1947 | 0.5148 | 0.7373 | 0.2813 | 0.6053 | 0.6865 | 0.3254 | 0.6528 | 0.8579 | 0.519 | 0.6596 | 0.5672 | 0.7059 | 0.4615 | 0.5703 | 0.5222 | 0.6245 | 0.5966 | 0.7529 | 0.6766 | 0.806 |
6.2957 | 50.0 | 37500 | 9.5094 | 0.56 | 0.6937 | 0.5776 | 0.1949 | 0.518 | 0.7408 | 0.2823 | 0.6067 | 0.691 | 0.3327 | 0.6582 | 0.8621 | 0.5256 | 0.6642 | 0.5721 | 0.7055 | 0.4636 | 0.5741 | 0.5234 | 0.6241 | 0.597 | 0.763 | 0.6779 | 0.8151 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for hungnguyen2k4/rtdetr-r50-fruits-best-finetune
Base model
PekingU/rtdetr_v2_r50vd
Finetuned
hungnguyen2k4/rtdetr-r50-fruits-finetune