rtdetr-r50-fruits3.1-finetune

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2825
  • Map: 0.5141
  • Map 50: 0.6438
  • Map 75: 0.5328
  • Map Small: 0.1834
  • Map Medium: 0.4552
  • Map Large: 0.6833
  • Mar 1: 0.2766
  • Mar 10: 0.6043
  • Mar 100: 0.6896
  • Mar Small: 0.3069
  • Mar Medium: 0.653
  • Mar Large: 0.8601
  • Map Apple: 0.484
  • Mar 100 Apple: 0.6951
  • Map Banana: 0.5239
  • Mar 100 Banana: 0.7047
  • Map Grapes: 0.4436
  • Mar 100 Grapes: 0.5755
  • Map Orange: 0.4851
  • Mar 100 Orange: 0.6356
  • Map Pineapple: 0.6032
  • Mar 100 Pineapple: 0.7605
  • Map Watermelon: 0.5445
  • Mar 100 Watermelon: 0.7659

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Apple Mar 100 Apple Map Banana Mar 100 Banana Map Grapes Mar 100 Grapes Map Orange Mar 100 Orange Map Pineapple Mar 100 Pineapple Map Watermelon Mar 100 Watermelon
61.0927 1.0 750 12.3536 0.4105 0.5309 0.4348 0.1007 0.3523 0.5936 0.2516 0.5606 0.6943 0.3265 0.6804 0.8648 0.3696 0.6673 0.4721 0.7284 0.3272 0.5616 0.3893 0.626 0.4278 0.7525 0.4771 0.8298
16.2131 2.0 1500 11.0204 0.4591 0.5898 0.4801 0.1266 0.3931 0.6455 0.2608 0.5789 0.7038 0.343 0.6833 0.8654 0.4085 0.6891 0.4473 0.7299 0.3675 0.5923 0.4612 0.6384 0.5151 0.7489 0.5548 0.8241
15.0214 3.0 2250 10.6170 0.4864 0.6169 0.5035 0.1523 0.4532 0.651 0.2665 0.5951 0.7111 0.3693 0.6834 0.8752 0.4727 0.701 0.4647 0.7427 0.3902 0.5812 0.4707 0.6376 0.5272 0.7851 0.5933 0.8188
13.8951 4.0 3000 10.3428 0.5106 0.6355 0.5364 0.1468 0.4302 0.7136 0.2779 0.5933 0.6975 0.3156 0.6572 0.8758 0.4983 0.6914 0.4684 0.7223 0.4134 0.5737 0.4944 0.6373 0.5702 0.7678 0.6189 0.7926
13.1909 5.0 3750 10.0188 0.5284 0.6543 0.5485 0.1648 0.4766 0.7106 0.2813 0.6024 0.723 0.3977 0.6936 0.8861 0.5002 0.6963 0.5068 0.7582 0.4229 0.6168 0.5036 0.6445 0.6046 0.7812 0.6321 0.8406
12.6709 6.0 4500 9.9985 0.5344 0.6675 0.5558 0.1833 0.4766 0.7188 0.2757 0.6071 0.7241 0.3929 0.6945 0.8888 0.5139 0.7059 0.4884 0.7343 0.4506 0.6095 0.521 0.6597 0.5997 0.7891 0.6326 0.8457
12.2203 7.0 5250 10.2048 0.5242 0.6494 0.5433 0.178 0.4519 0.7161 0.2805 0.6061 0.7126 0.351 0.675 0.8877 0.4993 0.6946 0.5214 0.7222 0.4247 0.5999 0.4953 0.6465 0.5884 0.7826 0.6158 0.8295
12.0783 8.0 6000 10.1179 0.5268 0.6511 0.5493 0.1827 0.4863 0.7003 0.2771 0.6061 0.7276 0.3949 0.7093 0.8875 0.5119 0.7065 0.4949 0.7407 0.4276 0.6063 0.4987 0.6544 0.5789 0.7971 0.649 0.8608
11.7674 9.0 6750 10.7223 0.4952 0.6141 0.5192 0.1485 0.4494 0.6737 0.2707 0.6003 0.7203 0.397 0.69 0.8796 0.4633 0.6996 0.4973 0.7448 0.4313 0.5888 0.4631 0.6606 0.4962 0.7714 0.6198 0.8565
11.5219 10.0 7500 9.8389 0.5221 0.6564 0.5438 0.2016 0.461 0.7026 0.2753 0.6044 0.7138 0.3662 0.6795 0.8808 0.4921 0.6998 0.4981 0.731 0.4604 0.6223 0.5007 0.6329 0.5846 0.7768 0.5966 0.8202
11.1748 11.0 8250 10.1057 0.5227 0.6501 0.5488 0.2067 0.4508 0.7094 0.276 0.6117 0.7201 0.3771 0.6965 0.881 0.5098 0.7075 0.4953 0.7257 0.4535 0.6093 0.4955 0.6459 0.5596 0.7967 0.6225 0.8355
11.0897 12.0 9000 10.4848 0.5181 0.6473 0.5365 0.1853 0.4529 0.6962 0.2812 0.5989 0.6958 0.3296 0.6539 0.8736 0.4742 0.676 0.5002 0.7085 0.455 0.5944 0.4842 0.6337 0.5777 0.7373 0.6171 0.8247
10.8801 13.0 9750 10.0386 0.5219 0.6487 0.541 0.1772 0.4602 0.7022 0.2822 0.6146 0.7172 0.3145 0.6881 0.8917 0.4978 0.6926 0.5425 0.7467 0.4405 0.6068 0.4968 0.6402 0.5561 0.7967 0.5974 0.8205
10.723 14.0 10500 9.5538 0.5517 0.6795 0.5827 0.205 0.4932 0.7338 0.2815 0.6206 0.7203 0.3765 0.6777 0.8922 0.526 0.6924 0.5612 0.7605 0.4625 0.6355 0.5177 0.6492 0.6413 0.7783 0.6012 0.806
10.5762 15.0 11250 9.9150 0.5278 0.6531 0.5492 0.1654 0.4583 0.7103 0.2817 0.608 0.7124 0.328 0.6863 0.8814 0.5079 0.6937 0.5213 0.74 0.4296 0.5788 0.5046 0.6458 0.5681 0.788 0.6354 0.8278
10.5457 16.0 12000 9.7727 0.5418 0.6709 0.5595 0.2069 0.4866 0.7144 0.2766 0.6027 0.698 0.3201 0.6541 0.8743 0.4888 0.671 0.5528 0.7216 0.4597 0.5941 0.4876 0.6375 0.5958 0.7475 0.666 0.8165
10.3053 17.0 12750 9.9212 0.5392 0.6723 0.5627 0.1865 0.5009 0.7033 0.2806 0.6087 0.7101 0.3284 0.68 0.8813 0.4932 0.6922 0.5369 0.7298 0.458 0.598 0.5006 0.6409 0.5976 0.7681 0.6489 0.8315
10.2234 18.0 13500 9.7854 0.5276 0.6601 0.5511 0.1782 0.4737 0.6981 0.2792 0.61 0.7155 0.3208 0.6896 0.8851 0.5198 0.7052 0.5038 0.724 0.4565 0.6081 0.5157 0.6548 0.5671 0.7746 0.6024 0.8264
10.0754 19.0 14250 10.5111 0.5086 0.6329 0.531 0.1631 0.4495 0.6713 0.2769 0.6035 0.7092 0.3326 0.6738 0.8797 0.4743 0.6977 0.5051 0.7214 0.443 0.601 0.4704 0.6357 0.5976 0.7663 0.5609 0.8332
10.1197 20.0 15000 10.2968 0.5204 0.6463 0.5452 0.1705 0.4586 0.7002 0.2755 0.6036 0.7082 0.3294 0.6713 0.885 0.4837 0.6886 0.4481 0.7191 0.4491 0.5994 0.5103 0.6457 0.5882 0.7678 0.6432 0.8284
9.8649 21.0 15750 10.0439 0.5264 0.6576 0.5482 0.1852 0.4709 0.7035 0.2796 0.5943 0.697 0.3317 0.6524 0.8778 0.4649 0.6727 0.4915 0.7099 0.4386 0.5786 0.498 0.6446 0.6342 0.7696 0.631 0.8065
9.8367 22.0 16500 9.5550 0.5584 0.6869 0.5826 0.2292 0.5105 0.7348 0.2825 0.618 0.7228 0.3802 0.6957 0.8876 0.5113 0.6976 0.5429 0.7419 0.4542 0.6117 0.5285 0.6559 0.634 0.7841 0.6797 0.8455
9.5876 23.0 17250 9.8796 0.5391 0.6607 0.563 0.1863 0.4824 0.7163 0.2796 0.6184 0.7192 0.3546 0.6988 0.884 0.4933 0.6959 0.5088 0.7413 0.4553 0.6001 0.513 0.6559 0.6116 0.7779 0.6525 0.8443
9.5507 24.0 18000 10.0149 0.5351 0.6661 0.5565 0.2108 0.4703 0.7099 0.2782 0.6077 0.706 0.3393 0.6614 0.8794 0.5201 0.699 0.5335 0.7254 0.4731 0.6213 0.5071 0.6384 0.6214 0.7779 0.5554 0.7741
9.4775 25.0 18750 9.9049 0.538 0.6679 0.5583 0.1898 0.4768 0.7084 0.2808 0.6184 0.7181 0.3543 0.6864 0.8851 0.5175 0.6982 0.5342 0.7324 0.4569 0.6153 0.5212 0.6541 0.5982 0.7884 0.6002 0.8205
9.4565 26.0 19500 10.0631 0.5303 0.6553 0.5532 0.1805 0.4694 0.6984 0.281 0.6136 0.7016 0.325 0.6713 0.8758 0.5116 0.6836 0.5145 0.7229 0.4634 0.5911 0.4719 0.6312 0.5988 0.7678 0.6215 0.8128
9.3008 27.0 20250 9.9243 0.5324 0.6673 0.5509 0.1461 0.4834 0.6986 0.2792 0.6119 0.7063 0.3311 0.6805 0.8749 0.4854 0.7004 0.5318 0.7143 0.449 0.5907 0.4865 0.6382 0.5817 0.7641 0.6602 0.8304
9.1329 28.0 21000 10.0756 0.5404 0.675 0.5647 0.1808 0.4816 0.7115 0.2807 0.6161 0.7134 0.3472 0.6905 0.8782 0.5153 0.6949 0.5222 0.7309 0.4616 0.6116 0.5094 0.6427 0.6026 0.7808 0.631 0.8196
9.1302 29.0 21750 9.9070 0.548 0.6764 0.5735 0.1968 0.5044 0.7151 0.2826 0.6176 0.7138 0.3358 0.6884 0.8799 0.5129 0.7091 0.5441 0.7292 0.4818 0.6084 0.4875 0.6393 0.6194 0.7667 0.6423 0.8301
9.0189 30.0 22500 10.0898 0.5376 0.6634 0.5571 0.1898 0.489 0.705 0.2798 0.6117 0.7035 0.3247 0.6689 0.8763 0.5088 0.6922 0.5051 0.702 0.4494 0.588 0.4821 0.6381 0.6578 0.7928 0.6225 0.8082
8.9913 31.0 23250 10.9136 0.4988 0.6284 0.5167 0.128 0.452 0.667 0.2759 0.5892 0.6775 0.2474 0.643 0.8679 0.4517 0.6456 0.4671 0.6929 0.4257 0.5472 0.4507 0.611 0.5799 0.7757 0.6177 0.7923
8.7717 32.0 24000 10.2825 0.5141 0.6438 0.5328 0.1834 0.4552 0.6833 0.2766 0.6043 0.6896 0.3069 0.653 0.8601 0.484 0.6951 0.5239 0.7047 0.4436 0.5755 0.4851 0.6356 0.6032 0.7605 0.5445 0.7659

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hungnguyen2k4/rtdetr-r50-fruits3.1-finetune

Finetuned
(14)
this model