Files changed (1) hide show
  1. README.md +81 -67
README.md CHANGED
@@ -1,68 +1,82 @@
1
- ---
2
- base_model: Qwen/Qwen2.5-3B-Instruct
3
- library_name: transformers
4
- model_name: qwen-2.5-3b-r1-countdown
5
- tags:
6
- - generated_from_trainer
7
- - trl
8
- - grpo
9
- licence: license
10
- ---
11
-
12
- # Model Card for qwen-2.5-3b-r1-countdown
13
-
14
- This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
- It has been trained using [TRL](https://github.com/huggingface/trl).
16
-
17
- ## Quick start
18
-
19
- ```python
20
- from transformers import pipeline
21
-
22
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="iaa01/qwen-2.5-3b-r1-countdown", device="cuda")
24
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
- print(output["generated_text"])
26
- ```
27
-
28
- ## Training procedure
29
-
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/personal-iaa/huggingface/runs/21moehkl)
31
-
32
-
33
- This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
-
35
- ### Framework versions
36
-
37
- - TRL: 0.16.0.dev0
38
- - Transformers: 4.49.0
39
- - Pytorch: 2.5.1+cu121
40
- - Datasets: 3.4.1
41
- - Tokenizers: 0.21.1
42
-
43
- ## Citations
44
-
45
- Cite GRPO as:
46
-
47
- ```bibtex
48
- @article{zhihong2024deepseekmath,
49
- title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
- author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
- year = 2024,
52
- eprint = {arXiv:2402.03300},
53
- }
54
-
55
- ```
56
-
57
- Cite TRL as:
58
-
59
- ```bibtex
60
- @misc{vonwerra2022trl,
61
- title = {{TRL: Transformer Reinforcement Learning}},
62
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
- year = 2020,
64
- journal = {GitHub repository},
65
- publisher = {GitHub},
66
- howpublished = {\url{https://github.com/huggingface/trl}}
67
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ```
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: qwen-2.5-3b-r1-countdown
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ language:
11
+ - zho
12
+ - eng
13
+ - fra
14
+ - spa
15
+ - por
16
+ - deu
17
+ - ita
18
+ - rus
19
+ - jpn
20
+ - kor
21
+ - vie
22
+ - tha
23
+ - ara
24
+ ---
25
+
26
+ # Model Card for qwen-2.5-3b-r1-countdown
27
+
28
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
29
+ It has been trained using [TRL](https://github.com/huggingface/trl).
30
+
31
+ ## Quick start
32
+
33
+ ```python
34
+ from transformers import pipeline
35
+
36
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
37
+ generator = pipeline("text-generation", model="iaa01/qwen-2.5-3b-r1-countdown", device="cuda")
38
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
39
+ print(output["generated_text"])
40
+ ```
41
+
42
+ ## Training procedure
43
+
44
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/personal-iaa/huggingface/runs/21moehkl)
45
+
46
+
47
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
48
+
49
+ ### Framework versions
50
+
51
+ - TRL: 0.16.0.dev0
52
+ - Transformers: 4.49.0
53
+ - Pytorch: 2.5.1+cu121
54
+ - Datasets: 3.4.1
55
+ - Tokenizers: 0.21.1
56
+
57
+ ## Citations
58
+
59
+ Cite GRPO as:
60
+
61
+ ```bibtex
62
+ @article{zhihong2024deepseekmath,
63
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
64
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
65
+ year = 2024,
66
+ eprint = {arXiv:2402.03300},
67
+ }
68
+
69
+ ```
70
+
71
+ Cite TRL as:
72
+
73
+ ```bibtex
74
+ @misc{vonwerra2022trl,
75
+ title = {{TRL: Transformer Reinforcement Learning}},
76
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
77
+ year = 2020,
78
+ journal = {GitHub repository},
79
+ publisher = {GitHub},
80
+ howpublished = {\url{https://github.com/huggingface/trl}}
81
+ }
82
  ```