SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the stock_trading_qa dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("iamleonie/leonies-test")
# Run inference
sentences = [
'What role does back-testing play in refining event-driven trading strategies using historical data and real-time analysis?',
'Back-testing allows traders to evaluate the performance of event-driven trading strategies using historical data, identify patterns, optimize parameters, and refine strategies for real-time implementation.',
'Risk management techniques such as position sizing, portfolio diversification, and stop-loss orders are often used in quantitative momentum strategies to manage downside risk and protect against large losses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@3 | 0.675 |
cosine_precision@3 | 0.225 |
cosine_recall@3 | 0.675 |
cosine_ndcg@3 | 0.5838 |
cosine_mrr@3 | 0.5523 |
cosine_map@3 | 0.5523 |
Training Details
Training Dataset
stock_trading_qa
- Dataset: stock_trading_qa at 35dab2e
- Size: 6,448 training samples
- Columns:
anchor
andcontext
- Approximate statistics based on the first 1000 samples:
anchor context type string string details - min: 7 tokens
- mean: 15.83 tokens
- max: 39 tokens
- min: 17 tokens
- mean: 34.67 tokens
- max: 59 tokens
- Samples:
anchor context How should I approach investing in a volatile stock market?
Diversify your portfolio, invest in stable companies, consider dollar-cost averaging, and stay informed about market trends to make informed trading decisions.
What is the role of cross-validation in assessing the performance of time series forecasting models for stock market trends?
Cross-validation helps evaluate the generalization ability of forecasting models by partitioning historical data into training and validation sets, ensuring that the model's performance is robust and reliable for future predictions.
What role does correlation play in statistical arbitrage and pair trading?
Correlation measures the relationship between asset prices and helps traders identify pairs that exhibit a stable price relationship suitable for pair trading.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
stock_trading_qa
- Dataset: stock_trading_qa at 35dab2e
- Size: 717 evaluation samples
- Columns:
anchor
andcontext
- Approximate statistics based on the first 717 samples:
anchor context type string string details - min: 7 tokens
- mean: 15.96 tokens
- max: 30 tokens
- min: 17 tokens
- mean: 35.03 tokens
- max: 62 tokens
- Samples:
anchor context How can anomaly detection in stock prices be used to identify market inefficiencies and opportunities for arbitrage?
Anomaly detection can help identify market inefficiencies by spotting mispricings and opportunities for arbitrage, where traders can exploit price differentials to make profits by trading on anomalies.
How do traders interpret the Head and Shoulders pattern as a trading signal?
The Head and Shoulders pattern is a reversal pattern with three peaks, where the middle peak (head) is higher than the other two (shoulders), signaling a potential trend reversal and offering a bearish trading signal.
How do traders use Fibonacci levels as trading signals?
Fibonacci levels are used as trading signals to identify potential support and resistance levels, trend reversals, and price targets in financial markets.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueoptim
: adamw_8bitbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_8bitoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@3 |
---|---|---|---|---|
-1 | -1 | - | - | 0.4451 |
0.3970 | 10 | 5.7817 | 0.0765 | 0.5278 |
0.7940 | 20 | 1.295 | 0.0251 | 0.5608 |
1.1588 | 30 | 0.6208 | 0.0209 | 0.5771 |
1.5558 | 40 | 0.5701 | 0.0183 | 0.5789 |
1.9529 | 50 | 0.4546 | 0.0171 | 0.5882 |
2.3176 | 60 | 0.2861 | 0.0160 | 0.5839 |
2.7146 | 70 | 0.3315 | 0.0154 | 0.5818 |
3.0794 | 80 | 0.3179 | 0.0152 | 0.5852 |
3.4764 | 90 | 0.367 | 0.0150 | 0.5843 |
3.8734 | 100 | 0.354 | 0.0150 | 0.5838 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 33
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for iamleonie/leonies-test
Base model
BAAI/bge-base-en-v1.5Dataset used to train iamleonie/leonies-test
Evaluation results
- Cosine Accuracy@3 on Unknownself-reported0.675
- Cosine Precision@3 on Unknownself-reported0.225
- Cosine Recall@3 on Unknownself-reported0.675
- Cosine Ndcg@3 on Unknownself-reported0.584
- Cosine Mrr@3 on Unknownself-reported0.552
- Cosine Map@3 on Unknownself-reported0.552