iamleonie commited on
Commit
5d6f1e6
·
verified ·
1 Parent(s): be5b753

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:6448
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: BAAI/bge-base-en-v1.5
12
+ widget:
13
+ - source_sentence: How are retail sales data integrated into trading models?
14
+ sentences:
15
+ - Lagged variables represent historical values of a time series variable and are
16
+ used in forecasting models to capture the impact of past observations on future
17
+ market trends, enhancing the accuracy of predictions by incorporating relevant
18
+ historical information.
19
+ - Retail sales data reflect consumer spending patterns and overall economic activity.
20
+ Traders analyze this indicator to gauge consumer confidence, sectoral performance,
21
+ and potential market trends related to retail-focused stocks.
22
+ - Regulatory approval for a new drug can have a positive impact on a pharmaceutical
23
+ company's stock price as it opens up new revenue streams and market opportunities.
24
+ - source_sentence: What impact does algorithmic trading have on market liquidity?
25
+ sentences:
26
+ - Volume analysis in stock trading involves studying the number of shares or contracts
27
+ traded in a security or market over a specific period to gauge the strength or
28
+ weakness of a price move.
29
+ - Social media sentiment analysis can assist in detecting anomalies in stock prices
30
+ by capturing public sentiment and opinions on stocks, identifying trends or sudden
31
+ shifts in sentiment that may precede abnormal price movements.
32
+ - Algorithmic trading can impact market liquidity by increasing trading speed, efficiency,
33
+ and overall trading volume, leading to potential liquidity disruptions during
34
+ certain market conditions.
35
+ - source_sentence: What considerations should traders take into account when selecting
36
+ an adaptive trading algorithm?
37
+ sentences:
38
+ - Historical price data helps analysts identify patterns and trends that can be
39
+ used to develop models for predicting future stock prices based on past performance.
40
+ - Traders should consider factors such as performance metrics, risk management capabilities,
41
+ adaptability to changing market conditions, data requirements, and the level of
42
+ transparency and control offered by the algorithm.
43
+ - A stock exchange is a centralized marketplace where securities like stocks, bonds,
44
+ and commodities are bought and sold by investors and traders.
45
+ - source_sentence: How can currency exchange rates and forex markets be integrated
46
+ into trading models alongside macroeconomic indicators?
47
+ sentences:
48
+ - Moving averages smooth out price data over a specified period, making it easier
49
+ to identify trends and reversals in stock prices.
50
+ - Currency exchange rates and forex markets are integrated into trading models to
51
+ assess currency risk, international trade impact, and cross-border investment
52
+ opportunities influenced by macroeconomic indicators.
53
+ - Investors use quantitative momentum indicators to identify securities that are
54
+ gaining positive momentum and potentially generating profits by buying those assets
55
+ and selling underperforming assets.
56
+ - source_sentence: What role does back-testing play in refining event-driven trading
57
+ strategies using historical data and real-time analysis?
58
+ sentences:
59
+ - Genetic algorithms are well-suited for solving multi-objective optimization problems,
60
+ nonlinear and non-convex optimization problems, problems with high-dimensional
61
+ search spaces, and problems where traditional methods may struggle to find optimal
62
+ solutions.
63
+ - Risk management techniques such as position sizing, portfolio diversification,
64
+ and stop-loss orders are often used in quantitative momentum strategies to manage
65
+ downside risk and protect against large losses.
66
+ - Back-testing allows traders to evaluate the performance of event-driven trading
67
+ strategies using historical data, identify patterns, optimize parameters, and
68
+ refine strategies for real-time implementation.
69
+ datasets:
70
+ - yymYYM/stock_trading_QA
71
+ pipeline_tag: sentence-similarity
72
+ library_name: sentence-transformers
73
+ metrics:
74
+ - cosine_accuracy@3
75
+ - cosine_precision@3
76
+ - cosine_recall@3
77
+ - cosine_ndcg@3
78
+ - cosine_mrr@3
79
+ - cosine_map@3
80
+ model-index:
81
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
82
+ results:
83
+ - task:
84
+ type: information-retrieval
85
+ name: Information Retrieval
86
+ dataset:
87
+ name: Unknown
88
+ type: unknown
89
+ metrics:
90
+ - type: cosine_accuracy@3
91
+ value: 0.6750348675034867
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_precision@3
94
+ value: 0.22501162250116222
95
+ name: Cosine Precision@3
96
+ - type: cosine_recall@3
97
+ value: 0.6750348675034867
98
+ name: Cosine Recall@3
99
+ - type: cosine_ndcg@3
100
+ value: 0.5838116811117793
101
+ name: Cosine Ndcg@3
102
+ - type: cosine_mrr@3
103
+ value: 0.5523012552301251
104
+ name: Cosine Mrr@3
105
+ - type: cosine_map@3
106
+ value: 0.5523012552301255
107
+ name: Cosine Map@3
108
+ ---
109
+
110
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
111
+
112
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [stock_trading_qa](https://huggingface.co/datasets/yymYYM/stock_trading_QA) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
113
+
114
+ ## Model Details
115
+
116
+ ### Model Description
117
+ - **Model Type:** Sentence Transformer
118
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
119
+ - **Maximum Sequence Length:** 512 tokens
120
+ - **Output Dimensionality:** 768 dimensions
121
+ - **Similarity Function:** Cosine Similarity
122
+ - **Training Dataset:**
123
+ - [stock_trading_qa](https://huggingface.co/datasets/yymYYM/stock_trading_QA)
124
+ - **Language:** en
125
+ <!-- - **License:** Unknown -->
126
+
127
+ ### Model Sources
128
+
129
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
130
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
131
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
132
+
133
+ ### Full Model Architecture
134
+
135
+ ```
136
+ SentenceTransformer(
137
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
138
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
139
+ (2): Normalize()
140
+ )
141
+ ```
142
+
143
+ ## Usage
144
+
145
+ ### Direct Usage (Sentence Transformers)
146
+
147
+ First install the Sentence Transformers library:
148
+
149
+ ```bash
150
+ pip install -U sentence-transformers
151
+ ```
152
+
153
+ Then you can load this model and run inference.
154
+ ```python
155
+ from sentence_transformers import SentenceTransformer
156
+
157
+ # Download from the 🤗 Hub
158
+ model = SentenceTransformer("iamleonie/leonies-test")
159
+ # Run inference
160
+ sentences = [
161
+ 'What role does back-testing play in refining event-driven trading strategies using historical data and real-time analysis?',
162
+ 'Back-testing allows traders to evaluate the performance of event-driven trading strategies using historical data, identify patterns, optimize parameters, and refine strategies for real-time implementation.',
163
+ 'Risk management techniques such as position sizing, portfolio diversification, and stop-loss orders are often used in quantitative momentum strategies to manage downside risk and protect against large losses.',
164
+ ]
165
+ embeddings = model.encode(sentences)
166
+ print(embeddings.shape)
167
+ # [3, 768]
168
+
169
+ # Get the similarity scores for the embeddings
170
+ similarities = model.similarity(embeddings, embeddings)
171
+ print(similarities.shape)
172
+ # [3, 3]
173
+ ```
174
+
175
+ <!--
176
+ ### Direct Usage (Transformers)
177
+
178
+ <details><summary>Click to see the direct usage in Transformers</summary>
179
+
180
+ </details>
181
+ -->
182
+
183
+ <!--
184
+ ### Downstream Usage (Sentence Transformers)
185
+
186
+ You can finetune this model on your own dataset.
187
+
188
+ <details><summary>Click to expand</summary>
189
+
190
+ </details>
191
+ -->
192
+
193
+ <!--
194
+ ### Out-of-Scope Use
195
+
196
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
197
+ -->
198
+
199
+ ## Evaluation
200
+
201
+ ### Metrics
202
+
203
+ #### Information Retrieval
204
+
205
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
206
+
207
+ | Metric | Value |
208
+ |:-------------------|:-----------|
209
+ | cosine_accuracy@3 | 0.675 |
210
+ | cosine_precision@3 | 0.225 |
211
+ | cosine_recall@3 | 0.675 |
212
+ | **cosine_ndcg@3** | **0.5838** |
213
+ | cosine_mrr@3 | 0.5523 |
214
+ | cosine_map@3 | 0.5523 |
215
+
216
+ <!--
217
+ ## Bias, Risks and Limitations
218
+
219
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
220
+ -->
221
+
222
+ <!--
223
+ ### Recommendations
224
+
225
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
226
+ -->
227
+
228
+ ## Training Details
229
+
230
+ ### Training Dataset
231
+
232
+ #### stock_trading_qa
233
+
234
+ * Dataset: [stock_trading_qa](https://huggingface.co/datasets/yymYYM/stock_trading_QA) at [35dab2e](https://huggingface.co/datasets/yymYYM/stock_trading_QA/tree/35dab2e25b6da10842cfb0f832b715cab3765727)
235
+ * Size: 6,448 training samples
236
+ * Columns: <code>anchor</code> and <code>context</code>
237
+ * Approximate statistics based on the first 1000 samples:
238
+ | | anchor | context |
239
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
240
+ | type | string | string |
241
+ | details | <ul><li>min: 7 tokens</li><li>mean: 15.83 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 34.67 tokens</li><li>max: 59 tokens</li></ul> |
242
+ * Samples:
243
+ | anchor | context |
244
+ |:------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
245
+ | <code>How should I approach investing in a volatile stock market?</code> | <code>Diversify your portfolio, invest in stable companies, consider dollar-cost averaging, and stay informed about market trends to make informed trading decisions.</code> |
246
+ | <code>What is the role of cross-validation in assessing the performance of time series forecasting models for stock market trends?</code> | <code>Cross-validation helps evaluate the generalization ability of forecasting models by partitioning historical data into training and validation sets, ensuring that the model's performance is robust and reliable for future predictions.</code> |
247
+ | <code>What role does correlation play in statistical arbitrage and pair trading?</code> | <code>Correlation measures the relationship between asset prices and helps traders identify pairs that exhibit a stable price relationship suitable for pair trading.</code> |
248
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
249
+ ```json
250
+ {
251
+ "scale": 20.0,
252
+ "similarity_fct": "cos_sim"
253
+ }
254
+ ```
255
+
256
+ ### Evaluation Dataset
257
+
258
+ #### stock_trading_qa
259
+
260
+ * Dataset: [stock_trading_qa](https://huggingface.co/datasets/yymYYM/stock_trading_QA) at [35dab2e](https://huggingface.co/datasets/yymYYM/stock_trading_QA/tree/35dab2e25b6da10842cfb0f832b715cab3765727)
261
+ * Size: 717 evaluation samples
262
+ * Columns: <code>anchor</code> and <code>context</code>
263
+ * Approximate statistics based on the first 717 samples:
264
+ | | anchor | context |
265
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
266
+ | type | string | string |
267
+ | details | <ul><li>min: 7 tokens</li><li>mean: 15.96 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 35.03 tokens</li><li>max: 62 tokens</li></ul> |
268
+ * Samples:
269
+ | anchor | context |
270
+ |:----------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
271
+ | <code>How can anomaly detection in stock prices be used to identify market inefficiencies and opportunities for arbitrage?</code> | <code>Anomaly detection can help identify market inefficiencies by spotting mispricings and opportunities for arbitrage, where traders can exploit price differentials to make profits by trading on anomalies.</code> |
272
+ | <code>How do traders interpret the Head and Shoulders pattern as a trading signal?</code> | <code>The Head and Shoulders pattern is a reversal pattern with three peaks, where the middle peak (head) is higher than the other two (shoulders), signaling a potential trend reversal and offering a bearish trading signal.</code> |
273
+ | <code>How do traders use Fibonacci levels as trading signals?</code> | <code>Fibonacci levels are used as trading signals to identify potential support and resistance levels, trend reversals, and price targets in financial markets.</code> |
274
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
275
+ ```json
276
+ {
277
+ "scale": 20.0,
278
+ "similarity_fct": "cos_sim"
279
+ }
280
+ ```
281
+
282
+ ### Training Hyperparameters
283
+ #### Non-Default Hyperparameters
284
+
285
+ - `eval_strategy`: steps
286
+ - `per_device_train_batch_size`: 16
287
+ - `per_device_eval_batch_size`: 16
288
+ - `gradient_accumulation_steps`: 16
289
+ - `learning_rate`: 2e-05
290
+ - `num_train_epochs`: 4
291
+ - `lr_scheduler_type`: cosine
292
+ - `warmup_ratio`: 0.1
293
+ - `fp16`: True
294
+ - `optim`: adamw_8bit
295
+ - `batch_sampler`: no_duplicates
296
+
297
+ #### All Hyperparameters
298
+ <details><summary>Click to expand</summary>
299
+
300
+ - `overwrite_output_dir`: False
301
+ - `do_predict`: False
302
+ - `eval_strategy`: steps
303
+ - `prediction_loss_only`: True
304
+ - `per_device_train_batch_size`: 16
305
+ - `per_device_eval_batch_size`: 16
306
+ - `per_gpu_train_batch_size`: None
307
+ - `per_gpu_eval_batch_size`: None
308
+ - `gradient_accumulation_steps`: 16
309
+ - `eval_accumulation_steps`: None
310
+ - `torch_empty_cache_steps`: None
311
+ - `learning_rate`: 2e-05
312
+ - `weight_decay`: 0.0
313
+ - `adam_beta1`: 0.9
314
+ - `adam_beta2`: 0.999
315
+ - `adam_epsilon`: 1e-08
316
+ - `max_grad_norm`: 1.0
317
+ - `num_train_epochs`: 4
318
+ - `max_steps`: -1
319
+ - `lr_scheduler_type`: cosine
320
+ - `lr_scheduler_kwargs`: {}
321
+ - `warmup_ratio`: 0.1
322
+ - `warmup_steps`: 0
323
+ - `log_level`: passive
324
+ - `log_level_replica`: warning
325
+ - `log_on_each_node`: True
326
+ - `logging_nan_inf_filter`: True
327
+ - `save_safetensors`: True
328
+ - `save_on_each_node`: False
329
+ - `save_only_model`: False
330
+ - `restore_callback_states_from_checkpoint`: False
331
+ - `no_cuda`: False
332
+ - `use_cpu`: False
333
+ - `use_mps_device`: False
334
+ - `seed`: 42
335
+ - `data_seed`: None
336
+ - `jit_mode_eval`: False
337
+ - `use_ipex`: False
338
+ - `bf16`: False
339
+ - `fp16`: True
340
+ - `fp16_opt_level`: O1
341
+ - `half_precision_backend`: auto
342
+ - `bf16_full_eval`: False
343
+ - `fp16_full_eval`: False
344
+ - `tf32`: None
345
+ - `local_rank`: 0
346
+ - `ddp_backend`: None
347
+ - `tpu_num_cores`: None
348
+ - `tpu_metrics_debug`: False
349
+ - `debug`: []
350
+ - `dataloader_drop_last`: False
351
+ - `dataloader_num_workers`: 0
352
+ - `dataloader_prefetch_factor`: None
353
+ - `past_index`: -1
354
+ - `disable_tqdm`: False
355
+ - `remove_unused_columns`: True
356
+ - `label_names`: None
357
+ - `load_best_model_at_end`: False
358
+ - `ignore_data_skip`: False
359
+ - `fsdp`: []
360
+ - `fsdp_min_num_params`: 0
361
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
362
+ - `fsdp_transformer_layer_cls_to_wrap`: None
363
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
364
+ - `deepspeed`: None
365
+ - `label_smoothing_factor`: 0.0
366
+ - `optim`: adamw_8bit
367
+ - `optim_args`: None
368
+ - `adafactor`: False
369
+ - `group_by_length`: False
370
+ - `length_column_name`: length
371
+ - `ddp_find_unused_parameters`: None
372
+ - `ddp_bucket_cap_mb`: None
373
+ - `ddp_broadcast_buffers`: False
374
+ - `dataloader_pin_memory`: True
375
+ - `dataloader_persistent_workers`: False
376
+ - `skip_memory_metrics`: True
377
+ - `use_legacy_prediction_loop`: False
378
+ - `push_to_hub`: False
379
+ - `resume_from_checkpoint`: None
380
+ - `hub_model_id`: None
381
+ - `hub_strategy`: every_save
382
+ - `hub_private_repo`: None
383
+ - `hub_always_push`: False
384
+ - `gradient_checkpointing`: False
385
+ - `gradient_checkpointing_kwargs`: None
386
+ - `include_inputs_for_metrics`: False
387
+ - `include_for_metrics`: []
388
+ - `eval_do_concat_batches`: True
389
+ - `fp16_backend`: auto
390
+ - `push_to_hub_model_id`: None
391
+ - `push_to_hub_organization`: None
392
+ - `mp_parameters`:
393
+ - `auto_find_batch_size`: False
394
+ - `full_determinism`: False
395
+ - `torchdynamo`: None
396
+ - `ray_scope`: last
397
+ - `ddp_timeout`: 1800
398
+ - `torch_compile`: False
399
+ - `torch_compile_backend`: None
400
+ - `torch_compile_mode`: None
401
+ - `include_tokens_per_second`: False
402
+ - `include_num_input_tokens_seen`: False
403
+ - `neftune_noise_alpha`: None
404
+ - `optim_target_modules`: None
405
+ - `batch_eval_metrics`: False
406
+ - `eval_on_start`: False
407
+ - `use_liger_kernel`: False
408
+ - `eval_use_gather_object`: False
409
+ - `average_tokens_across_devices`: False
410
+ - `prompts`: None
411
+ - `batch_sampler`: no_duplicates
412
+ - `multi_dataset_batch_sampler`: proportional
413
+
414
+ </details>
415
+
416
+ ### Training Logs
417
+ | Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@3 |
418
+ |:------:|:----:|:-------------:|:---------------:|:-------------:|
419
+ | -1 | -1 | - | - | 0.4451 |
420
+ | 0.3970 | 10 | 5.7817 | 0.0765 | 0.5278 |
421
+ | 0.7940 | 20 | 1.295 | 0.0251 | 0.5608 |
422
+ | 1.1588 | 30 | 0.6208 | 0.0209 | 0.5771 |
423
+ | 1.5558 | 40 | 0.5701 | 0.0183 | 0.5789 |
424
+ | 1.9529 | 50 | 0.4546 | 0.0171 | 0.5882 |
425
+ | 2.3176 | 60 | 0.2861 | 0.0160 | 0.5839 |
426
+ | 2.7146 | 70 | 0.3315 | 0.0154 | 0.5818 |
427
+ | 3.0794 | 80 | 0.3179 | 0.0152 | 0.5852 |
428
+ | 3.4764 | 90 | 0.367 | 0.0150 | 0.5843 |
429
+ | 3.8734 | 100 | 0.354 | 0.0150 | 0.5838 |
430
+
431
+
432
+ ### Framework Versions
433
+ - Python: 3.11.12
434
+ - Sentence Transformers: 4.1.0
435
+ - Transformers: 4.52.4
436
+ - PyTorch: 2.6.0+cu124
437
+ - Accelerate: 1.7.0
438
+ - Datasets: 3.6.0
439
+ - Tokenizers: 0.21.1
440
+
441
+ ## Citation
442
+
443
+ ### BibTeX
444
+
445
+ #### Sentence Transformers
446
+ ```bibtex
447
+ @inproceedings{reimers-2019-sentence-bert,
448
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
449
+ author = "Reimers, Nils and Gurevych, Iryna",
450
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
451
+ month = "11",
452
+ year = "2019",
453
+ publisher = "Association for Computational Linguistics",
454
+ url = "https://arxiv.org/abs/1908.10084",
455
+ }
456
+ ```
457
+
458
+ #### MultipleNegativesRankingLoss
459
+ ```bibtex
460
+ @misc{henderson2017efficient,
461
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
462
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
463
+ year={2017},
464
+ eprint={1705.00652},
465
+ archivePrefix={arXiv},
466
+ primaryClass={cs.CL}
467
+ }
468
+ ```
469
+
470
+ <!--
471
+ ## Glossary
472
+
473
+ *Clearly define terms in order to be accessible across audiences.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Authors
478
+
479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Contact
484
+
485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
486
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.52.4",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57a11cef410c1bea24b987213419704e106eb0d750262ba5a792cf7bc2451292
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff