SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
This is a sentence-transformers model finetuned from ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ielabgroup/Starbucks_STS")
# Run inference
sentences = [
'A dog is in the water.',
'Wet brown dog swims towards camera.',
'The dog is rolling around in the grass.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.817 |
spearman_cosine | 0.8274 |
pearson_manhattan | 0.8085 |
spearman_manhattan | 0.805 |
pearson_euclidean | 0.8123 |
spearman_euclidean | 0.8093 |
pearson_dot | 0.7658 |
spearman_dot | 0.7565 |
pearson_max | 0.817 |
spearman_max | 0.8274 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
starbucks_loss.StarbucksLoss
with these parameters:{ "loss": "MatryoshkaLoss", "n_selections_per_step": -1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_layers": [ 1, 3, 5, 7, 9, 11 ], "matryoshka_dims": [ 32, 64, 128, 256, 512, 768 ] }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | sts-test_spearman_cosine |
---|---|---|---|
0.0229 | 100 | 16.7727 | - |
0.0459 | 200 | 9.653 | - |
0.0688 | 300 | 8.3187 | - |
0.0918 | 400 | 7.748 | - |
0.1147 | 500 | 7.2587 | - |
0.1376 | 600 | 6.734 | - |
0.1606 | 700 | 6.4463 | - |
0.1835 | 800 | 6.299 | - |
0.2065 | 900 | 5.9946 | - |
0.2294 | 1000 | 5.9348 | - |
0.2524 | 1100 | 5.7723 | - |
0.2753 | 1200 | 5.5822 | - |
0.2982 | 1300 | 5.4233 | - |
0.3212 | 1400 | 5.3427 | - |
0.3441 | 1500 | 5.3132 | - |
0.3671 | 1600 | 5.3149 | - |
0.3900 | 1700 | 5.3007 | - |
0.4129 | 1800 | 4.9539 | - |
0.4359 | 1900 | 4.9308 | - |
0.4588 | 2000 | 4.8171 | - |
0.4818 | 2100 | 5.0181 | - |
0.5047 | 2200 | 4.9631 | - |
0.5276 | 2300 | 4.8125 | - |
0.5506 | 2400 | 4.7133 | - |
0.5735 | 2500 | 4.5809 | - |
0.5965 | 2600 | 4.6093 | - |
0.6194 | 2700 | 4.6723 | - |
0.6423 | 2800 | 4.5526 | - |
0.6653 | 2900 | 4.4967 | - |
0.6882 | 3000 | 4.4178 | - |
0.7112 | 3100 | 4.4333 | - |
0.7341 | 3200 | 4.3289 | - |
0.7571 | 3300 | 4.5199 | - |
0.7800 | 3400 | 4.3389 | - |
0.8029 | 3500 | 4.3394 | - |
0.8259 | 3600 | 4.2423 | - |
0.8488 | 3700 | 4.3219 | - |
0.8718 | 3800 | 4.3297 | - |
0.8947 | 3900 | 4.3132 | - |
0.9176 | 4000 | 4.2616 | - |
0.9406 | 4100 | 4.2233 | - |
0.9635 | 4200 | 4.1912 | - |
0.9865 | 4300 | 4.1838 | - |
1.0 | 4359 | - | 0.8274 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ielabgroup/Starbucks_STS
Base model
google-bert/bert-base-uncasedDataset used to train ielabgroup/Starbucks_STS
Evaluation results
- Pearson Cosine on sts testself-reported0.817
- Spearman Cosine on sts testself-reported0.827
- Pearson Manhattan on sts testself-reported0.809
- Spearman Manhattan on sts testself-reported0.805
- Pearson Euclidean on sts testself-reported0.812
- Spearman Euclidean on sts testself-reported0.809
- Pearson Dot on sts testself-reported0.766
- Spearman Dot on sts testself-reported0.756
- Pearson Max on sts testself-reported0.817
- Spearman Max on sts testself-reported0.827