EuroBERT-210m-humour-detection

This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4992
  • Accuracy: 0.7665
  • Precision: 0.7514
  • Recall: 0.8029
  • F1: 0.7763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3213 0.2222 500 0.2204 0.9176 0.9153 0.9205 0.9179
0.2453 0.4444 1000 0.2832 0.9202 0.8754 0.9799 0.9247
0.2058 0.6667 1500 0.1405 0.9389 0.9626 0.9133 0.9373
0.1893 0.8889 2000 0.1722 0.9407 0.9156 0.9709 0.9424
0.1533 1.1111 2500 0.1565 0.9483 0.9390 0.9588 0.9488
0.1324 1.3333 3000 0.1516 0.9474 0.9343 0.9624 0.9482
0.1283 1.5556 3500 0.1512 0.9494 0.9612 0.9367 0.9488
0.1209 1.7778 4000 0.1489 0.9458 0.9634 0.9269 0.9448
0.1196 2.0 4500 0.1538 0.9505 0.9467 0.9547 0.9507
0.0884 2.2222 5000 0.2242 0.9470 0.9605 0.9323 0.9462
0.0822 2.4444 5500 0.2198 0.9472 0.9591 0.9344 0.9466
0.0871 2.6667 6000 0.2110 0.9471 0.9538 0.9398 0.9467
0.0726 2.8889 6500 0.2161 0.9480 0.9550 0.9403 0.9476

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.8.0.dev20250521
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
212M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for igorktech/EuroBERT-210m-humour-detection

Finetuned
(36)
this model