|  | --- | 
					
						
						|  | license: llama3.1 | 
					
						
						|  | language: | 
					
						
						|  | - el | 
					
						
						|  | - en | 
					
						
						|  | pipeline_tag: text-generation | 
					
						
						|  | library_name: transformers | 
					
						
						|  | tags: | 
					
						
						|  | - text-generation-inference | 
					
						
						|  | base_model: | 
					
						
						|  | - ilsp/Llama-Krikri-8B-Base | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | 🚨 **PLEASE USE THE OFFICIAL QUANTIZED VERSIONS: [GGUF](https://huggingface.co/ilsp/Llama-Krikri-8B-Instruct-GGUF) OR REQUEST A SPECIFIC ONE** 🚨 | 
					
						
						|  |  | 
					
						
						|  | 🚨 *There is no guarantee that you are using the latest improved versions from 3rd party quantizations as we have updated the model's weights* 🚨 | 
					
						
						|  |  | 
					
						
						|  | # Llama-Krikri-8B-Instruct: An Instruction-tuned Large Language Model for the Greek language | 
					
						
						|  |  | 
					
						
						|  | Following the release of [Meltemi-7B](https://huggingface.co/ilsp/Meltemi-7B-v1) on the 26th March 2024, we are happy to welcome Krikri to the family of ILSP open Greek LLMs. | 
					
						
						|  | Krikri is built on top of [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B), extending its capabilities for Greek through continual pretraining on a large corpus of high-quality and locally relevant Greek texts. We present **Llama-Krikri-8B-Instruct**, along with the base model, [Llama-Krikri-8B-Base](https://huggingface.co/ilsp/Llama-Krikri-8B-Base) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Model Information | 
					
						
						|  |  | 
					
						
						|  | ## Base Model | 
					
						
						|  |  | 
					
						
						|  | - Vocabulary extension of the Llama-3.1 tokenizer with Greek tokens | 
					
						
						|  | - 128k context length (approximately 80,000 Greek words) | 
					
						
						|  | - We extend the pretraining of Llama-3.1-8B with added proficiency for the Greek language, by utilizing a large training corpus. | 
					
						
						|  | * This corpus includes 56.7 billion monolingual Greek tokens, constructed from publicly available resources. | 
					
						
						|  | * Additionaly, to mitigate catastrophic forgetting and ensure that the model has bilingual capabilities, we use additional sub-corpora with monolingual English texts (21 billion tokens) and Greek-English parallel data (5.5 billion tokens). | 
					
						
						|  | * The training corpus also contains 7.8 billion math and code tokens. | 
					
						
						|  | * This corpus has been processed, filtered, and deduplicated to ensure data quality and is outlined below: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | | Sub-corpus   | # Tokens         | Percentage | | 
					
						
						|  | |-----------|------------------|------------| | 
					
						
						|  | | Greek     | 56.7 B   | 62.3 %      | | 
					
						
						|  | | English   | 21.0 B   | 23.1 %      | | 
					
						
						|  | | Parallel  |  5.5 B   | 6.0 %       | | 
					
						
						|  | | Math/Code |  7.8 B   | 8.6 %       | | 
					
						
						|  | | **Total** | 91 B   |  **100%**       | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Chosen subsets of the 91 billion corpus were upsampled resulting in a size of **110 billion tokens**. | 
					
						
						|  |  | 
					
						
						|  | ## Instruct Model | 
					
						
						|  |  | 
					
						
						|  | Llama-Krikri-8B-Instruct is the result of post-training Llama-Kriki-8B-Base and features: | 
					
						
						|  | - Enhanced chat capabilities and instruction-following in both Greek and English. | 
					
						
						|  | - Document translation from Greek to English, French, German, Italian, Portuguese, Spanish and vice versa. | 
					
						
						|  | - Great performance on generation, comprehension, and editing tasks, such as summarization, creative content creation, text modification, entity recognition, sentiment analysis, etc. | 
					
						
						|  | - Domain-specifc expertise for specialized legal, financial, medical, and scientific applications. | 
					
						
						|  | - Retrieval-Augmented Generation (RAG) utilizing multiple documents with 128k context length. | 
					
						
						|  | - Improved coding and agentic capabilities with correct formatting and tool use. | 
					
						
						|  | - Conversion or structured extraction (e.g., XML, JSON) in data-to-text & text-to-data settings. | 
					
						
						|  | - Analytical thinking and Chain-of-Thought (CoT) reasoning for problem-solving. | 
					
						
						|  |  | 
					
						
						|  | We used a multi-stage process in order to build Llama-Krikri-8B-Instruct which includes: | 
					
						
						|  | - 2-stage Supervised Fine-Tuning with a combination of Greek & English instruction-response pairs | 
					
						
						|  | - **Stage 1**: **856,946** instruction-response pairs (371,379 Greek + 485,567 English) | 
					
						
						|  | - **Stage 2**: **638,408** instruction-response pairs (279,948 Greek + 358,460 English) | 
					
						
						|  | - Alignment with a combination of Greek & English preference triplets | 
					
						
						|  | - **Length Normalized DPO**: **92,394** preference triplets (47,132 Greek + 45,262 English) | 
					
						
						|  |  | 
					
						
						|  | To build the SFT & DPO data, we utilized various methodologies including: | 
					
						
						|  | - Collecting existing high-quality datasets such as [Tulu 3](https://huggingface.co/datasets/allenai/tulu-3-sft-mixture), [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk), [MAGPIE Ultra](https://huggingface.co/datasets/argilla/magpie-ultra-v1.0), [Orca Agent Instruct](https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1), [IFEval Like Data](https://huggingface.co/datasets/argilla/ifeval-like-data), [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized), [NVIDIA HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2), [Intel Orca](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), [UltraMedical](https://huggingface.co/datasets/TsinghuaC3I/UltraMedical-Preference), and other datasets focused on safety, truthfulness, and instruction-following. | 
					
						
						|  | - Translating various data into Greek using an in-house translation tool. | 
					
						
						|  | - Distilling (with the MAGPIE methodology) models which exhibit strong performance in Greek, such as [Gemma 2 27B IT](https://huggingface.co/google/gemma-2-27b-it). | 
					
						
						|  | - Scoring data with the [Skywork Reward Gemma 2 27B v0.2](https://huggingface.co/Skywork/Skywork-Reward-Gemma-2-27B-v0.2) Reward Model and filtering using rule-based filters. | 
					
						
						|  | - Creating data for sentence and document translation using high-quality parallel corpora mainly from [ELRC-SHARE](https://elrc-share.eu/). | 
					
						
						|  | - Synthetically extracting question-answer pairs (RAG) and multi-turn dialogues from diverse sources such as Wikipedia, EUR-LEX, Greek School Books, and Kallipos. | 
					
						
						|  |  | 
					
						
						|  | # Evaluation | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | 🚨 **More information on post-training, methdology, and evaluation coming soon.** 🚨 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # How to use | 
					
						
						|  |  | 
					
						
						|  | ## With Transformers | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | device = "cuda" | 
					
						
						|  |  | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained("ilsp/Llama-Krikri-8B-Instruct") | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained("ilsp/Llama-Krikri-8B-Instruct") | 
					
						
						|  |  | 
					
						
						|  | model.to(device) | 
					
						
						|  |  | 
					
						
						|  | system_prompt = "Είσαι το Κρικρί, ένα εξαιρετικά ανεπτυγμένο μοντέλο Τεχνητής Νοημοσύνης για τα ελληνικα και εκπαιδεύτηκες από το ΙΕΛ του Ε.Κ. \"Αθηνά\"." | 
					
						
						|  | user_prompt = "Σε τι διαφέρει ένα κρικρί από ένα λάμα;" | 
					
						
						|  |  | 
					
						
						|  | messages = [ | 
					
						
						|  | {"role": "system", "content": system_prompt}, | 
					
						
						|  | {"role": "user", "content": user_prompt}, | 
					
						
						|  | ] | 
					
						
						|  | prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) | 
					
						
						|  | input_prompt = tokenizer(prompt, return_tensors='pt').to(device) | 
					
						
						|  | outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True) | 
					
						
						|  |  | 
					
						
						|  | print(tokenizer.batch_decode(outputs)[0]) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## With OpenAI compatible server via vLLM | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | vllm serve ilsp/Llama-Krikri-8B-Instruct \ | 
					
						
						|  | --enforce-eager \ | 
					
						
						|  | --dtype 'bfloat16' \ | 
					
						
						|  | --api-key token-abc123 | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Then, the model can be used through Python using: | 
					
						
						|  | ```python | 
					
						
						|  | from openai import OpenAI | 
					
						
						|  |  | 
					
						
						|  | api_key = "token-abc123" | 
					
						
						|  | base_url = "http://localhost:8000/v1" | 
					
						
						|  |  | 
					
						
						|  | client = OpenAI( | 
					
						
						|  | api_key=api_key, | 
					
						
						|  | base_url=base_url, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | system_prompt = "Είσαι ένα ανεπτυγμένο μεταφραστικό σύστημα που απαντάει με λίστες Python. Δεν γράφεις τίποτα άλλο στις απαντήσεις σου πέρα από τις μεταφρασμένες λίστες." | 
					
						
						|  | user_prompt = "Δώσε μου την παρακάτω λίστα με μεταφρασμένο κάθε string της στα ελληνικά: ['Ethics of duty', 'Postmodern ethics', 'Consequentialist ethics', 'Utilitarian ethics', 'Deontological ethics', 'Virtue ethics', 'Relativist ethics']" | 
					
						
						|  |  | 
					
						
						|  | messages = [ | 
					
						
						|  | {"role": "system", "content": system_prompt}, | 
					
						
						|  | {"role": "user", "content": user_prompt}, | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | response = client.chat.completions.create(model="ilsp/Llama-Krikri-8B-Instruct", | 
					
						
						|  | messages=messages, | 
					
						
						|  | temperature=0.0, | 
					
						
						|  | top_p=0.95, | 
					
						
						|  | max_tokens=8192, | 
					
						
						|  | stream=False) | 
					
						
						|  |  | 
					
						
						|  | print(response.choices[0].message.content) | 
					
						
						|  | # ['Ηθική καθήκοντος', 'Μεταμοντέρνα ηθική', 'Συνεπειοκρατική ηθική', 'Ωφελιμιστική ηθική', 'Δεοντολογική ηθική', 'Ηθική αρετών', 'Σχετικιστική ηθική'] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | # Evaluation | 
					
						
						|  |  | 
					
						
						|  | 🚨 **Instruction following and chat capability evaluation benchmarks coming soon.** 🚨 | 
					
						
						|  |  | 
					
						
						|  | # Acknowledgements | 
					
						
						|  |  | 
					
						
						|  | The ILSP team utilized Amazon's cloud computing services, which were made available via GRNET under the [OCRE Cloud framework](https://www.ocre-project.eu/), providing Amazon Web Services for the Greek Academic and Research Community. |