YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

It seems my matmul is stronger than LUT-based inference on AMD Ryzen 9 5950X 16-Core by 5%:

  • 6.96 t/s w4g128
  • 7.31 t/s AVX2

This is a W4G128_1 file.

It is converted from ChenMnZ/Llama-2-7b-EfficientQAT-w4g128-GPTQ

./llama-cli -m ChenMnZ_Llama-2-7b-EfficientQAT-w4g128-GPTQ/ChenMnZ_Llama-2-7b-EfficientQAT-w4g128.gguf -n 50 -p hi
build: 5130 (7cb118f3) with Ubuntu clang version 14.0.0-1ubuntu1.1 for x86_64-pc-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 29 key-value pairs and 291 tensors from /home/user/Storage/ChenMnZ_Llama-2-7b-EfficientQAT-w4g128-GPTQ/ChenMnZ_Llama-2-7b-EfficientQAT-w4g128.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = ChenMnZ_Llama 2 7b EfficientQAT W4G12...
llama_model_loader: - kv   3:                           general.finetune str              = EfficientQAT-w4g128-GPTQ
llama_model_loader: - kv   4:                           general.basename str              = ChenMnZ_Llama-2
llama_model_loader: - kv   5:                         general.size_label str              = 7B
llama_model_loader: - kv   6:                          llama.block_count u32              = 32
llama_model_loader: - kv   7:                       llama.context_length u32              = 4096
llama_model_loader: - kv   8:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   9:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv  10:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  11:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv  12:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  13:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  14:                          general.file_type u32              = 46
llama_model_loader: - kv  15:                           llama.vocab_size u32              = 32001
llama_model_loader: - kv  16:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  17:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  18:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  19:                      tokenizer.ggml.tokens arr[str,32001]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  20:                      tokenizer.ggml.scores arr[f32,32001]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  21:                  tokenizer.ggml.token_type arr[i32,32001]   = [3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  22:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  23:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  24:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  25:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  26:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  27:            tokenizer.ggml.add_space_prefix bool             = true
llama_model_loader: - kv  28:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:    2 tensors
llama_model_loader: - type tmac_w4g128_1:  224 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = TMAC_W4G128_1 - 4.5 bpw
print_info: file size   = 3.88 GiB (4.95 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 4
load: token to piece cache size = 0.1684 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 4096
print_info: n_embd           = 4096
print_info: n_layer          = 32
print_info: n_head           = 32
print_info: n_head_kv        = 32
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 1
print_info: n_embd_k_gqa     = 4096
print_info: n_embd_v_gqa     = 4096
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 11008
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 7B
print_info: model params     = 6.74 B
print_info: general.name     = ChenMnZ_Llama 2 7b EfficientQAT W4G128 GPTQ
print_info: vocab type       = SPM
print_info: n_vocab          = 32001
print_info: n_merges         = 0
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 2 '</s>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 0 '<unk>'
print_info: LF token         = 13 '<0x0A>'
print_info: EOG token        = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
Tuned kernel config: M=4096, N=1, K=4096, bm=256, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 0.7750 ms
Tuned kernel config: M=4096, N=1, K=4096, bm=512, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 0.7561 ms
Tuned kernel config: M=4096, N=1, K=4096, bm=1024, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 0.7626 ms
Tuned kernel config: M=4096, N=1, K=4096, bm=2048, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 0.7545 ms
Tuned kernel config: M=11008, N=1, K=4096, bm=256, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 2.0892 ms
Tuned kernel config: M=11008, N=1, K=4096, bm=512, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 2.0287 ms
Tuned kernel config: M=11008, N=1, K=4096, bm=1024, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 2.0261 ms
Tuned kernel config: M=4096, N=1, K=11008, bm=256, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 2.0912 ms
Tuned kernel config: M=4096, N=1, K=11008, bm=512, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 2.0294 ms
Tuned kernel config: M=4096, N=1, K=11008, bm=1024, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 1.9938 ms
Tuned kernel config: M=4096, N=1, K=11008, bm=2048, n=8, kfactor=16, bits=4, g=4, ngroups_per_elem=2, q_group_size=128, act_group_size=64	 TIME: 1.7570 ms
load_tensors:         TMAC model buffer size =  3975.03 MiB
..........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context:        CPU  output buffer size =     0.12 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32, can_shift = 1
init:        CPU KV buffer size =  2048.00 MiB
llama_context: KV self size  = 2048.00 MiB, K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
llama_context:        CPU compute buffer size =   296.01 MiB
llama_context: graph nodes  = 1094
llama_context: graph splits = 1
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 16

system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 | 

sampler seed: 3883204367
sampler params: 
    repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
    dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
    top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
    mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = 50, n_keep = 1

 hi! my name is sandra and i am a 5th grade teacher. I have been teaching for 14 years. I love the kids and the creativity. I have taught every grade from 2nd through 5th.

llama_perf_sampler_print:    sampling time =       1.65 ms /    52 runs   (    0.03 ms per token, 31496.06 tokens per second)
llama_perf_context_print:        load time =  381620.92 ms
llama_perf_context_print: prompt eval time =     173.50 ms /     2 tokens (   86.75 ms per token,    11.53 tokens per second)
llama_perf_context_print:        eval time =    7042.50 ms /    49 runs   (  143.72 ms per token,     6.96 tokens per second)
llama_perf_context_print:       total time =    7222.20 ms /    51 tokens

AVX2 with the 2 f16 layers:

./llama-cli -p "hi" -n 50 -m /media/user/6/unsloth_llama-2-7b-chat/f16-emb-f16-output-ggml-model-Q4_0.gguf -no-cnv
build: 5228 (44cd8d91) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 35 key-value pairs and 291 tensors from /media/user/6/unsloth_llama-2-7b-chat/f16-emb-f16-output-ggml-model-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Llama 2 7b Chat
llama_model_loader: - kv   3:                       general.organization str              = Unsloth
llama_model_loader: - kv   4:                           general.finetune str              = chat
llama_model_loader: - kv   5:                           general.basename str              = llama-2
llama_model_loader: - kv   6:                         general.size_label str              = 7B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                               general.tags arr[str,6]       = ["unsloth", "transformers", "llama", ...
llama_model_loader: - kv   9:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  10:                          llama.block_count u32              = 32
llama_model_loader: - kv  11:                       llama.context_length u32              = 4096
llama_model_loader: - kv  12:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  13:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv  14:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  15:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv  16:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  17:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 32000
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  23:                      tokenizer.ggml.scores arr[f32,32000]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  24:                  tokenizer.ggml.token_type arr[i32,32000]   = [3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  27:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  28:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  29:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  30:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  31:                    tokenizer.chat_template str              = {% if messages[0]['role'] == 'system'...
llama_model_loader: - kv  32:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - kv  34:                          general.file_type u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:    2 tensors
llama_model_loader: - type q4_0:  224 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_0
print_info: file size   = 3.88 GiB (4.95 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 3
load: token to piece cache size = 0.1684 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 4096
print_info: n_embd           = 4096
print_info: n_layer          = 32
print_info: n_head           = 32
print_info: n_head_kv        = 32
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 1
print_info: n_embd_k_gqa     = 4096
print_info: n_embd_v_gqa     = 4096
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 11008
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 7B
print_info: model params     = 6.74 B
print_info: general.name     = Llama 2 7b Chat
print_info: vocab type       = SPM
print_info: n_vocab          = 32000
print_info: n_merges         = 0
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 2 '</s>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 0 '<unk>'
print_info: LF token         = 13 '<0x0A>'
print_info: EOG token        = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:  CPU_AARCH64 model buffer size =  3474.00 MiB
load_tensors:   CPU_Mapped model buffer size =  3950.83 MiB
..........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context:        CPU  output buffer size =     0.12 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32, can_shift = 1
init:        CPU KV buffer size =  2048.00 MiB
llama_context: KV self size  = 2048.00 MiB, K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
llama_context:        CPU compute buffer size =   296.01 MiB
llama_context: graph nodes  = 1094
llama_context: graph splits = 1
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 16

system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

sampler seed: 1030596542
sampler params: 
    repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
    dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
    top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
    mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = 50, n_keep = 1

hiphopdx.его
In the latest installment of our "On The Come Up" series, we highlight up-and-coming rapper and singer, D Smoke. The Los Angeles-based artist has been making waves in the hip

llama_perf_sampler_print:    sampling time =       1.56 ms /    52 runs   (    0.03 ms per token, 33397.56 tokens per second)
llama_perf_context_print:        load time =    3465.26 ms
llama_perf_context_print: prompt eval time =     158.13 ms /     2 tokens (   79.06 ms per token,    12.65 tokens per second)
llama_perf_context_print:        eval time =    6706.08 ms /    49 runs   (  136.86 ms per token,     7.31 tokens per second)
llama_perf_context_print:       total time =    6871.50 ms /    51 tokens

Regular CPU speed - AVX2 version pure q4_0 embedding and output layers

./llama-cli -m ~/Storage/pure-ggml-model-Q4_0.gguf -n 50 -p hi -no-cnv
build: 5228 (44cd8d91) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 35 key-value pairs and 291 tensors from /home/user/Storage/pure-ggml-model-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Llama 2 7b Chat
llama_model_loader: - kv   3:                       general.organization str              = Unsloth
llama_model_loader: - kv   4:                           general.finetune str              = chat
llama_model_loader: - kv   5:                           general.basename str              = llama-2
llama_model_loader: - kv   6:                         general.size_label str              = 7B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                               general.tags arr[str,6]       = ["unsloth", "transformers", "llama", ...
llama_model_loader: - kv   9:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  10:                          llama.block_count u32              = 32
llama_model_loader: - kv  11:                       llama.context_length u32              = 4096
llama_model_loader: - kv  12:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  13:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv  14:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  15:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv  16:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  17:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 32000
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  23:                      tokenizer.ggml.scores arr[f32,32000]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  24:                  tokenizer.ggml.token_type arr[i32,32000]   = [3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  27:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  28:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  29:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  30:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  31:                    tokenizer.chat_template str              = {% if messages[0]['role'] == 'system'...
llama_model_loader: - kv  32:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - kv  34:                          general.file_type u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  226 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_0
print_info: file size   = 3.53 GiB (4.50 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 3
load: token to piece cache size = 0.1684 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 4096
print_info: n_embd           = 4096
print_info: n_layer          = 32
print_info: n_head           = 32
print_info: n_head_kv        = 32
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 1
print_info: n_embd_k_gqa     = 4096
print_info: n_embd_v_gqa     = 4096
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 11008
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 7B
print_info: model params     = 6.74 B
print_info: general.name     = Llama 2 7b Chat
print_info: vocab type       = SPM
print_info: n_vocab          = 32000
print_info: n_merges         = 0
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 2 '</s>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 0 '<unk>'
print_info: LF token         = 13 '<0x0A>'
print_info: EOG token        = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:  CPU_AARCH64 model buffer size =  3544.31 MiB
load_tensors:   CPU_Mapped model buffer size =  3521.14 MiB
....................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context:        CPU  output buffer size =     0.12 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32, can_shift = 1
init:        CPU KV buffer size =  2048.00 MiB
llama_context: KV self size  = 2048.00 MiB, K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
llama_context:        CPU compute buffer size =   296.01 MiB
llama_context: graph nodes  = 1094
llama_context: graph splits = 1
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 16

system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

sampler seed: 1096331632
sampler params: 
    repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
    dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
    top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
    mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = 50, n_keep = 1

hi, my name is [Your Name] and I am a [Your Profession] with [Your Company]. I am reaching out to inquire about the possibility of [Your Reason for Contacting]."
 everybody knows that first impressions count

llama_perf_sampler_print:    sampling time =       1.53 ms /    52 runs   (    0.03 ms per token, 34076.02 tokens per second)
llama_perf_context_print:        load time =    3453.56 ms
llama_perf_context_print: prompt eval time =     151.00 ms /     2 tokens (   75.50 ms per token,    13.25 tokens per second)
llama_perf_context_print:        eval time =    6351.57 ms /    49 runs   (  129.62 ms per token,     7.71 tokens per second)
llama_perf_context_print:       total time =    6509.73 ms /    51 tokens
Downloads last month
1
GGUF
Model size
6.74B params
Architecture
llama
Hardware compatibility
Log In to view the estimation
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support