|
--- |
|
license: apache-2.0 |
|
--- |
|
<p align="center">📑 <a href="">Technical Report</a>|📖<a href="https://xqacmer.github.io/Ming-Unitok-Audio.github.io">Project Page</a> |🤗 <a href="https://huggingface.co/inclusionAI/MingTok-Audio">Hugging Face</a>| 🤖 <a href="https://modelscope.cn/models/inclusionAI/MingTok-Audio">ModelScope</a> |
|
|
|
## Key Features |
|
- 🚀 **First Unified Continuous Speech Tokenizer:** the first continuous audio tokenizer to effectively integrate semantic and acoustic features, suitable for both understanding and generation tasks. |
|
- 🎧 **High-Quality Reconstruction:** Achieve high-quality audio generation by modeling continuous features with a VAE, minimizing information loss and preserving intricate acoustic textures. |
|
- 🌐 **Convolution-Free Efficiency:** Built on a pure causal transformer architecture, completely eliminating convolutional layers for superior efficiency and a simpler design. |
|
|
|
|
|
|
|
## Installation |
|
``` |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Quick start |
|
```python |
|
import torch |
|
import torchaudio |
|
|
|
from audio_tokenizer.modeling_audio_vae import AudioVAE |
|
|
|
model = AudioVAE.from_pretrained('inclusionAI/MingTok-Audio') |
|
model = model.cuda() |
|
model.eval() |
|
|
|
waveform, sr = torchaudio.load('data/1089-134686-0000.flac', backend='soundfile') |
|
sample = {'waveform': waveform.cuda(), 'waveform_length': torch.tensor([waveform.size(-1)]).cuda()} |
|
|
|
with torch.no_grad(): |
|
with torch.autocast(device_type='cuda', dtype=torch.bfloat16): |
|
latent, frame_num = model.encode_latent(**sample) |
|
output_waveform = model.decode(latent) |
|
|
|
torchaudio.save('./1089-134686-0000_reconstruct.wav', output_waveform.cpu()[0], sample_rate=16000) |
|
``` |
|
|
|
## Performance |
|
### Speech reconstruction performance |
|
<table> |
|
<caption>Speech reconstruction performance comparison on various audio benchmark datasets. The best results are in <strong>bold</strong>.</caption> |
|
<thead> |
|
<tr> |
|
<th rowspan="2" align="left"><b>System</b></th> |
|
<th rowspan="2" align="center"><b>FrameRate</b></th> |
|
<th colspan="3" align="center"><b>SEED-ZH</b></th> |
|
<th colspan="3" align="center"><b>SEED-EN</b></th> |
|
</tr> |
|
<tr> |
|
<th align="center"><b>PESQ↑</b></th> |
|
<th align="center"><b>SIM↑</b></th> |
|
<th align="center"><b>STOI↑</b></th> |
|
<th align="center"><b>PESQ↑</b></th> |
|
<th align="center"><b>SIM↑</b></th> |
|
<th align="center"><b>STOI↑</b></th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td align="left">MiMo-Audio-Tokenizer</td> |
|
<td align="center">25</td> |
|
<td align="center">2.71</td> |
|
<td align="center">0.89</td> |
|
<td align="center">0.93</td> |
|
<td align="center">2.43</td> |
|
<td align="center">0.85</td> |
|
<td align="center">0.92</td> |
|
</tr> |
|
<tr> |
|
<td align="left">GLM4-Voice-Tokenizer</td> |
|
<td align="center">12.5</td> |
|
<td align="center">1.06</td> |
|
<td align="center">0.33</td> |
|
<td align="center">0.61</td> |
|
<td align="center">1.05</td> |
|
<td align="center">0.12</td> |
|
<td align="center">0.60</td> |
|
</tr> |
|
<tr> |
|
<td align="left">Baichuan-Audio-Tokenizer</td> |
|
<td align="center">12.5</td> |
|
<td align="center">1.84</td> |
|
<td align="center">0.78</td> |
|
<td align="center">0.86</td> |
|
<td align="center">1.62</td> |
|
<td align="center">0.69</td> |
|
<td align="center">0.85</td> |
|
</tr> |
|
<tr> |
|
<td align="left">XY-Tokenizer</td> |
|
<td align="center">12.5</td> |
|
<td align="center">2.27</td> |
|
<td align="center">0.77</td> |
|
<td align="center">0.90</td> |
|
<td align="center">2.14</td> |
|
<td align="center">0.82</td> |
|
<td align="center">0.90</td> |
|
</tr> |
|
<tr> |
|
<td align="left">Mimi</td> |
|
<td align="center">75</td> |
|
<td align="center">2.05</td> |
|
<td align="center">0.73</td> |
|
<td align="center">0.89</td> |
|
<td align="center">2.01</td> |
|
<td align="center">0.77</td> |
|
<td align="center">0.89</td> |
|
</tr> |
|
<tr> |
|
<td align="left">XCodec2.0</td> |
|
<td align="center">50</td> |
|
<td align="center">2.19</td> |
|
<td align="center">0.80</td> |
|
<td align="center">0.92</td> |
|
<td align="center">2.37</td> |
|
<td align="center">0.82</td> |
|
<td align="center">0.93</td> |
|
</tr> |
|
<tr> |
|
<td align="left">BigCodec</td> |
|
<td align="center">80</td> |
|
<td align="center">2.26</td> |
|
<td align="center">0.81</td> |
|
<td align="center">0.92</td> |
|
<td align="center">2.22</td> |
|
<td align="center">0.80</td> |
|
<td align="center">0.91</td> |
|
</tr> |
|
<tr> |
|
<td align="left"><strong>MingTok-Audio(ours)</td> |
|
<td align="center">50</td> |
|
<td align="center"><b>4.21</b></td> |
|
<td align="center"><b>0.96</b></td> |
|
<td align="center"><b>0.98</b></td> |
|
<td align="center"><b>4.04</b></td> |
|
<td align="center"><b>0.96</b></td> |
|
<td align="center"><b>0.98</b></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
### The adaptation performance for downstream ASR tasks |
|
<table> |
|
<caption>Understanding ASR performance comparison on various audio benchmark datasets. The best results are in <strong>bold</strong>.</caption> |
|
<thead> |
|
<tr> |
|
<th rowspan="2"><strong>Datasets</strong></th> |
|
<th rowspan="2"><strong>Model</strong></th> |
|
<th colspan="7"><strong>Performance</strong></th> |
|
</tr> |
|
<tr> |
|
<th><strong>aishell2-ios</strong></th> |
|
<th><strong>LS-clean</strong></th> |
|
<th><strong>Hunan</strong></th> |
|
<th><strong>Minnan</strong></th> |
|
<th><strong>Guangyue</strong></th> |
|
<th><strong>Chuanyu</strong></th> |
|
<th><strong>Shanghai</strong></th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="4"><strong>Understanding ASR</strong></td> |
|
<td>Kimi-Audio</td> |
|
<td><strong>2.56</td> |
|
<td><strong>1.28</td> |
|
<td>31.93</td> |
|
<td>80.28</td> |
|
<td>41.49</td> |
|
<td>6.69</td> |
|
<td>60.64</td> |
|
</tr> |
|
<tr> |
|
<td>Qwen2.5 Omni</td> |
|
<td>2.75</td> |
|
<td>1.80</td> |
|
<td>29.31</td> |
|
<td>53.43</td> |
|
<td>10.39</td> |
|
<td>7.61</td> |
|
<td>32.05</td> |
|
</tr> |
|
<tr> |
|
<td>Qwen2 Audio</td> |
|
<td>2.92</td> |
|
<td>1.60</td> |
|
<td>25.88</td> |
|
<td>123.78</td> |
|
<td>7.59</td> |
|
<td>7.77</td> |
|
<td>31.73</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Ming-UniAudio-16B-A3B(ours)</td> |
|
<td>2.84</td> |
|
<td>1.62</td> |
|
<td><strong>9.80</strong></td> |
|
<td><strong>16.50</strong></td> |
|
<td><strong>5.51</strong></td> |
|
<td><strong>5.46</strong></td> |
|
<td><strong>14.65</strong></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
### The adaptation performance for downstream TTS tasks |
|
|
|
<table> |
|
<caption>Performance comparison on various audio benchmark datasets. The best results are in <strong>bold</strong>.</caption> |
|
<thead> |
|
<tr> |
|
<th align="left"><b>Datasets</b></th> |
|
<th align="left"><b>Model</b></th> |
|
<th colspan="4" align="center"><b>Performance</b></th> |
|
</tr> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th align="center"><b>Seed-zh WER(%)</b></th> |
|
<th align="center"><b>Seed-zh SIM</b></th> |
|
<th align="center"><b>Seed-en WER(%)</b></th> |
|
<th align="center"><b>Seed-en SIM</b></th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="5" align="left" style="vertical-align: middle;"><b>Generation</b></td> |
|
<td align="left">Seed-TTS</td> |
|
<td align="center">1.12</td> |
|
<td align="center"><b>0.80</b></td> |
|
<td align="center">2.25</td> |
|
<td align="center"><b>0.76</b></td> |
|
</tr> |
|
<tr> |
|
<td align="left">MiMo-Audio</td> |
|
<td align="center">1.96</td> |
|
<td align="center">-</td> |
|
<td align="center">5.37</td> |
|
<td align="center">-</td> |
|
</tr> |
|
<tr> |
|
<td align="left">Qwen3-Omni-30B-A3B-Instruct</td> |
|
<td align="center">1.07</td> |
|
<td align="center">-</td> |
|
<td align="center"><b>1.39</b></td> |
|
<td align="center">-</td> |
|
</tr> |
|
<tr> |
|
<td align="left">Ming-Omni-Lite</td> |
|
<td align="center">1.69</td> |
|
<td align="center">0.68</td> |
|
<td align="center">4.31</td> |
|
<td align="center">0.51</td> |
|
</tr> |
|
<tr> |
|
<td align="left"><strong>Ming-UniAudio-16B-A3B(ours)</td> |
|
<td align="center"><b>0.95</b></td> |
|
<td align="center">0.70</td> |
|
<td align="center">1.85</td> |
|
<td align="center">0.58</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
## Acknowledgements |
|
1. We borrowed a lot of code from [X-Codec-2.0](https://github.com/zhenye234/X-Codec-2.0.git) for tokenizer training. |
|
2. We thank the OpenAI team for developing the [Whisper](https://github.com/openai/whisper) model and making its weights publicly available. |
|
|
|
|
|
## License and Legal Disclaimer |
|
|
|
This code repository is licensed under the [MIT License](./LICENSE), and the Legal Disclaimer is located in the [LEGAL.md file](./LEGAL.md) under the project's root directory. |
|
|
|
## Citation |
|
|
|
If you find our work helpful, feel free to give us a cite. |