caizhi1's picture
Update README.md (#4)
967583c verified
---
license: mit
language:
- en
base_model:
- inclusionAI/Ring-mini-linear-2.0
pipeline_tag: text-generation
---
# Quantized Ring-Linear-2.0
## Introduction
To enable deployment of [Ring-Linear-2.0](https://github.com/inclusionAI/Ring-V2/blob/main/hybrid_linear/README.md
) on memory-constrained devices, we release quantized weights using the GPTQ INT4 format. Additionally, we evaluate the online FP8 quantization performance of `Ring-Linear-2.0` models, which closely approaches that of BF16 precision.
## Model Downloads
| **Model** | **Maximum Supported Length** | **Download** |
|:----------------------:| :----------------: |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| Ring-flash-linear-2.0-GPTQ-int4 | 128k | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-flash-linear-2.0-GPTQ-int4) <br>[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ring-flash-linear-2.0-GPTQ-int4) |
| Ring-mini-linear-2.0-GPTQ-int4 | 512k | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-mini-linear-2.0-GPTQ-int4) <br>[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ring-mini-linear-2.0-GPTQ-int4) |
## Quickstart
### 🚀 vLLM
#### Environment Preparation
Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below.
First, create a Conda environment with Python 3.10 and CUDA 12.8:
```shell
conda create -n vllm python=3.10
conda activate vllm
```
Next, install our vLLM wheel package:
```shell
pip install https://media.githubusercontent.com/media/zheyishine/vllm_whl/refs/heads/main/vllm-0.8.5.post2.dev28%2Bgd327eed71.cu128-cp310-cp310-linux_x86_64.whl --force-reinstall
```
Finally, install compatible versions of transformers after vLLM is installed:
```shell
pip install transformers==4.51.1
```
#### Offline Inference
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ring-flash-linear-2.0-GPTQ-int4")
sampling_params = SamplingParams(temperature=0.6, top_p=1.0, max_tokens=16384)
# use `max_num_seqs=1` without concurrency
llm = LLM(model="inclusionAI/Ring-flash-linear-2.0-GPTQ-int4", dtype='auto', enable_prefix_caching=False, max_num_seqs=128)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = llm.generate([text], sampling_params)
for output in outputs:
print(output.outputs[0].text)
```
#### Online Inference
```shell
vllm serve inclusionAI/Ring-flash-linear-2.0-GPTQ-int4 \
--tensor-parallel-size 2 \
--pipeline-parallel-size 1 \
--gpu-memory-utilization 0.90 \
--max-num-seqs 128 \
--no-enable-prefix-caching
--api-key your-api-key
```
## Evaluation
We evaluate the INT4 and FP8 quantized models using several datasets. The FP8 quantization is applied via the quantization="fp8" argument in SGLang or vLLM.
### Ring-mini-linear-2.0
| **Dataset** | **BF16** | **FP8** | **GPTQ-Int4** |
| :----------------: |:--------:|:-------:|:-------------:|
| AIME25 | 73.65 | 72.40 | 66.56 |
| AIME24 | 79.95 | 79.53 | 74.95 |
| LiveCodeBench| 59.53 | 58.42 | 56.29 |
| GPQA | 65.69 | 66.79 | 62.53 |
### Ring-flash-linear-2.0
| **Dataset** | **BF16** | **FP8** | **GPTQ-Int4** |
| :----------------: |:--------:|:-------:| :-----------------------:|
| AIME25 | 85.10 | 84.22 | 82.88 |
| LiveCodeBench| 69.82 | 69.44 | 66.14 |
| GPQA | 72.85 | 72.95 | 71.72 |
## License
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ring-V2/blob/master/LICENSE).
## Citation
If you find our work helpful, feel free to give us a cite.