Whisper Small ru - slowlydoor (Automatic Speech Recognition)
This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2125
- Wer: 16.0405
- Cer: 4.2321
- Ser: 57.5223
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training code
pip install transformers evaluate soundfile
pip install -q jiwer tensorboard
pip install --upgrade datasets transformers
import re
import json
from datasets import load_dataset, DatasetDict, Audio
from transformers import WhisperForConditionalGeneration, WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, Seq2SeqTrainingArguments, Seq2SeqTrainer
import os, numpy as np, torch, evaluate, jiwer
from huggingface_hub import login
from dataclasses import dataclass
from typing import Any, Dict, List, Union
login("***")
common_voice = DatasetDict()
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "ru", split="train")
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "ru", split="test")
common_voice = common_voice.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"])
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small")
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Russian", task="transcribe")
processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Russian", task="transcribe")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
model.config.use_cache = False
def prepare_dataset(batch):
audio = batch["audio"]
batch["input_features"] = feature_extractor(
audio["array"],
sampling_rate=audio["sampling_rate"]
).input_features[0]
batch["labels"] = tokenizer(batch["sentence"]).input_ids
return batch
common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2 )
common_voice
wer_metric = evaluate.load("wer")
cer_metric = evaluate.load("cer")
def compute_metrics(pred):
pred_ids = pred.predictions
label_ids = pred.label_ids
label_ids[label_ids == -100] = tokenizer.pad_token_id
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
pairs = [(ref.strip(), hyp.strip()) for ref, hyp in zip(label_str, pred_str)]
pairs = [(ref, hyp) for ref, hyp in pairs if len(ref) > 0]
label_str, pred_str = zip(*pairs)
wer = 100 * wer_metric.compute(predictions=pred_str, references=label_str)
cer = 100 * cer_metric.compute(predictions=pred_str, references=label_str)
ser = 100 * (sum(p.strip() != r.strip() for p, r in zip(pred_str, label_str)) / len(pred_str))
return {
"wer": wer,
"cer": cer,
"ser": ser
}
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
processor: Any
decoder_start_token_id: int
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
input_features = [{"input_features": f["input_features"]} for f in features]
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
label_features = [{"input_ids": f["labels"]} for f in features]
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
processor=processor,
decoder_start_token_id=model.config.decoder_start_token_id,
)
training_args = Seq2SeqTrainingArguments(
output_dir="/content/drive/MyDrive/models/whisper_small_ru_model_trainer_3ep",
logging_dir="/content/drive/MyDrive/models/whisper_small_ru_model_trainer_3ep",
group_by_length=True,
per_device_train_batch_size=8,
per_device_eval_batch_size=4,
eval_strategy="steps",
logging_strategy="steps",
save_strategy="steps",
num_train_epochs=3,
generation_max_length=170,
logging_steps=25,
eval_steps=500,
save_steps=500,
fp16=True,
optim="adamw_torch_fused",
torch_compile=True,
gradient_checkpointing=True,
learning_rate=1e-5,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=False,
predict_with_generate=True,
)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=common_voice["train"],
eval_dataset=common_voice["test"],
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=processor.feature_extractor,
)
trainer.train()
Test result
import os
from transformers import (WhisperProcessor,
WhisperForConditionalGeneration,
pipeline)
import torch
import torchaudio
import librosa
import numpy as np
MODEL_HUG = "internalhell/whisper_small_ru_model_trainer_3ep"
processor = None
model = None
pipe = None
def get_model_pipe():
global model, processor, pipe
if model is None or processor is None:
processor = WhisperProcessor.from_pretrained(MODEL_HUG, language="russian")
model = WhisperForConditionalGeneration.from_pretrained(MODEL_HUG)
model.generation_config.forced_decoder_ids = None
forced_decoder_ids = processor.get_decoder_prompt_ids(language="ru", task="transcribe")
model.config.forced_decoder_ids = forced_decoder_ids
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
device=0 if torch.cuda.is_available() else -1,
)
return model
def recognize_audio_pipe(audio_path):
model = get_model_pipe()
waveform, sr = torchaudio.load(audio_path)
waveform = waveform.mean(dim=0, keepdim=True) # моно
if sr != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
waveform = resampler(waveform)
sr = 16000
waveform_np = waveform.squeeze(0).numpy()
return pipe({"array": waveform_np, "sampling_rate": sr})["text"]
print(recognize_audio_pipe("test.wav")) # jast .wav only
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Ser | Wer |
---|---|---|---|---|---|---|
0.2206 | 0.1516 | 500 | 5.4963 | 0.2603 | 69.4306 | 21.2669 |
0.22 | 0.3032 | 1000 | 5.3823 | 0.2467 | 67.3527 | 20.2971 |
0.1901 | 0.4548 | 1500 | 5.1160 | 0.2377 | 66.1766 | 19.5642 |
0.1969 | 0.6064 | 2000 | 5.0754 | 0.2273 | 64.3242 | 19.0509 |
0.1743 | 0.7580 | 2500 | 4.8523 | 0.2188 | 63.1481 | 18.2286 |
0.1747 | 0.9096 | 3000 | 4.8867 | 0.2167 | 62.4032 | 18.0985 |
0.077 | 1.0612 | 3500 | 4.5272 | 0.2142 | 60.5998 | 17.2007 |
0.0839 | 1.2129 | 4000 | 4.4628 | 0.2126 | 60.8743 | 17.1601 |
0.0888 | 1.3645 | 4500 | 4.4864 | 0.2092 | 60.3940 | 17.3529 |
0.069 | 1.5161 | 5000 | 4.4667 | 0.2118 | 60.1588 | 17.1578 |
0.0609 | 1.6677 | 5500 | 4.4298 | 0.2077 | 59.3355 | 16.8546 |
0.0721 | 1.8193 | 6000 | 4.3442 | 0.2060 | 58.6592 | 16.5527 |
0.0681 | 1.9709 | 6500 | 4.3284 | 0.2038 | 58.1692 | 16.3575 |
0.0322 | 2.1225 | 7000 | 4.2709 | 0.2130 | 57.7771 | 16.2809 |
0.0277 | 2.2741 | 7500 | 4.2543 | 0.2151 | 57.4733 | 16.1067 |
0.0249 | 2.4257 | 8000 | 4.2513 | 0.2130 | 57.4635 | 16.0741 |
0.0234 | 2.5773 | 8500 | 4.2832 | 0.2150 | 57.6693 | 16.2600 |
0.0264 | 2.7289 | 9000 | 4.2645 | 0.2145 | 57.6301 | 16.1160 |
0.0268 | 2.8805 | 9500 | 4.2321 | 0.2125 | 57.5223 | 16.0405 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for internalhell/whisper_small_ru_model_trainer_3ep
Base model
openai/whisper-small