itskavya's picture
Upload tokenizer
6e12329 verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large
tags:
  - automatic-speech-recognition
  - arabic
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: Whisper Large Informal Arabic
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Informal Arabic
          type: audiofolder
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 24.96401151631478
            name: Wer

Whisper Large Informal Arabic

This model is a fine-tuned version of openai/whisper-large on the Informal Arabic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5264
  • Wer: 24.9640
  • Cer: 8.1265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0054 13.1611 500 0.4210 27.3153 9.2113
0.0002 26.3221 1000 0.4803 24.9640 7.9997
0.0001 39.4832 1500 0.5063 24.6881 7.9997
0.0001 52.6443 2000 0.5200 24.7001 8.0326
0.0001 65.8054 2500 0.5264 24.9640 8.1265

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1