File size: 1,169 Bytes
00af40d d14acc9 00af40d d14acc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- en
tags:
- text-generation
- transformers
- finetuned
- phi-4
- lora
- causal-lm
license: apache-2.0
datasets: custom
model-index:
- name: mibera-v1-merged
results: []
---
# π `mibera-v1-merged` π
π **Fine-tuned model based on `microsoft/phi-4` using LoRA adapters**
## πΉ Model Details
- **Base Model**: `microsoft/phi-4`
- **Fine-tuned on**: Custom dataset
- **Architecture**: Transformer-based Causal LM
- **LoRA Adapter Merging**: β
Yes
- **Merged Model**: β
Ready for inference without adapters
## π Training & Fine-tuning Details
- **Training Method**: Fine-tuning with **LoRA (Low-Rank Adaptation)**
- **LoRA Rank**: 32
- **Dataset**: Custom curated dataset (details not publicly available)
- **Training Library**: π€ Hugging Face `transformers` + `peft`
## π How to Use the Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ivxxdegen/mibera-v1-merged"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
print("β
Model loaded successfully!")
|