cooking_sft_fail_new_mem
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the identity and the cooking_sft_fail_new_mem datasets. It achieves the following results on the evaluation set:
- Loss: 0.2036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3821 | 0.0133 | 50 | 0.4735 |
0.302 | 0.0267 | 100 | 0.3178 |
0.2988 | 0.0400 | 150 | 0.3253 |
0.3054 | 0.0533 | 200 | 0.3250 |
0.2967 | 0.0666 | 250 | 0.3232 |
0.3137 | 0.0800 | 300 | 0.3207 |
0.3221 | 0.0933 | 350 | 0.3211 |
0.3188 | 0.1066 | 400 | 0.3204 |
0.308 | 0.1200 | 450 | 0.3149 |
0.3123 | 0.1333 | 500 | 0.3106 |
0.3138 | 0.1466 | 550 | 0.3050 |
0.3032 | 0.1600 | 600 | 0.3046 |
0.2827 | 0.1733 | 650 | 0.3017 |
0.2953 | 0.1866 | 700 | 0.2970 |
0.2854 | 0.1999 | 750 | 0.2924 |
0.2872 | 0.2133 | 800 | 0.2896 |
0.2866 | 0.2266 | 850 | 0.2836 |
0.2925 | 0.2399 | 900 | 0.2794 |
0.2843 | 0.2533 | 950 | 0.2823 |
0.292 | 0.2666 | 1000 | 0.2789 |
0.2775 | 0.2799 | 1050 | 0.2763 |
0.2652 | 0.2933 | 1100 | 0.2717 |
0.27 | 0.3066 | 1150 | 0.2712 |
0.277 | 0.3199 | 1200 | 0.2749 |
0.2681 | 0.3332 | 1250 | 0.2709 |
0.2699 | 0.3466 | 1300 | 0.2718 |
0.2682 | 0.3599 | 1350 | 0.2676 |
0.2668 | 0.3732 | 1400 | 0.2662 |
0.2615 | 0.3866 | 1450 | 0.2689 |
0.2501 | 0.3999 | 1500 | 0.2583 |
0.2545 | 0.4132 | 1550 | 0.2568 |
0.2618 | 0.4265 | 1600 | 0.2523 |
0.2615 | 0.4399 | 1650 | 0.2550 |
0.2512 | 0.4532 | 1700 | 0.2488 |
0.245 | 0.4665 | 1750 | 0.2504 |
0.2503 | 0.4799 | 1800 | 0.2481 |
0.2402 | 0.4932 | 1850 | 0.2450 |
0.2346 | 0.5065 | 1900 | 0.2440 |
0.2413 | 0.5199 | 1950 | 0.2425 |
0.24 | 0.5332 | 2000 | 0.2383 |
0.2398 | 0.5465 | 2050 | 0.2408 |
0.2473 | 0.5598 | 2100 | 0.2384 |
0.2423 | 0.5732 | 2150 | 0.2348 |
0.2294 | 0.5865 | 2200 | 0.2311 |
0.2403 | 0.5998 | 2250 | 0.2323 |
0.2319 | 0.6132 | 2300 | 0.2297 |
0.222 | 0.6265 | 2350 | 0.2288 |
0.2193 | 0.6398 | 2400 | 0.2303 |
0.2252 | 0.6531 | 2450 | 0.2247 |
0.2304 | 0.6665 | 2500 | 0.2211 |
0.2139 | 0.6798 | 2550 | 0.2199 |
0.2186 | 0.6931 | 2600 | 0.2192 |
0.2156 | 0.7065 | 2650 | 0.2183 |
0.2187 | 0.7198 | 2700 | 0.2159 |
0.222 | 0.7331 | 2750 | 0.2174 |
0.2162 | 0.7465 | 2800 | 0.2153 |
0.2253 | 0.7598 | 2850 | 0.2132 |
0.2066 | 0.7731 | 2900 | 0.2134 |
0.2113 | 0.7864 | 2950 | 0.2107 |
0.2107 | 0.7998 | 3000 | 0.2085 |
0.2055 | 0.8131 | 3050 | 0.2097 |
0.2045 | 0.8264 | 3100 | 0.2075 |
0.2172 | 0.8398 | 3150 | 0.2062 |
0.2138 | 0.8531 | 3200 | 0.2075 |
0.194 | 0.8664 | 3250 | 0.2051 |
0.2133 | 0.8798 | 3300 | 0.2051 |
0.2025 | 0.8931 | 3350 | 0.2047 |
0.2088 | 0.9064 | 3400 | 0.2050 |
0.204 | 0.9197 | 3450 | 0.2044 |
0.2059 | 0.9331 | 3500 | 0.2039 |
0.2103 | 0.9464 | 3550 | 0.2039 |
0.2102 | 0.9597 | 3600 | 0.2039 |
0.2051 | 0.9731 | 3650 | 0.2038 |
0.2017 | 0.9864 | 3700 | 0.2037 |
0.2088 | 0.9997 | 3750 | 0.2037 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for izzcw/cooking_sft_fail_new_mem
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct