SFT-Qwen2.5-Coder-7B_v1
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.9584 | 0.2974 | 20 | 0.9885 |
| 0.8218 | 0.5948 | 40 | 0.9364 |
| 0.7618 | 0.8922 | 60 | 0.9027 |
| 0.6981 | 1.1784 | 80 | 0.8842 |
| 0.7566 | 1.4758 | 100 | 0.8678 |
| 0.6459 | 1.7732 | 120 | 0.8576 |
| 0.6026 | 2.0595 | 140 | 0.8553 |
| 0.6211 | 2.3569 | 160 | 0.8604 |
| 0.4883 | 2.6543 | 180 | 0.8642 |
| 0.5752 | 2.9517 | 200 | 0.8622 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 162