CPALL-Stock-Trend-Prediction-category-sentiment-filter-1stphase-MBert-APR-2
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6350
- Accuracy: 0.8858
- Precision: 0.8946
- Recall: 0.8858
- F1: 0.8871
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 287 | 0.7032 | 0.7455 | 0.7674 | 0.7455 | 0.7491 |
0.6914 | 2.0 | 574 | 0.5554 | 0.8266 | 0.8527 | 0.8266 | 0.8298 |
0.6914 | 3.0 | 861 | 0.3877 | 0.8810 | 0.8876 | 0.8810 | 0.8822 |
0.3057 | 4.0 | 1148 | 0.4868 | 0.8762 | 0.8880 | 0.8762 | 0.8781 |
0.3057 | 5.0 | 1435 | 0.4913 | 0.8874 | 0.8959 | 0.8874 | 0.8887 |
0.193 | 6.0 | 1722 | 0.5071 | 0.8949 | 0.9002 | 0.8949 | 0.8958 |
0.1082 | 7.0 | 2009 | 0.5636 | 0.8879 | 0.8958 | 0.8879 | 0.8891 |
0.1082 | 8.0 | 2296 | 0.6350 | 0.8858 | 0.8946 | 0.8858 | 0.8871 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support