kbank-finetune-bert2
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4075
- Accuracy: 0.2913
- Precision: 0.2838
- Recall: 0.2913
- F1: 0.2609
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 15 | 0.9443 | 0.5340 | 0.3892 | 0.5340 | 0.4006 |
No log | 2.0 | 30 | 0.9709 | 0.4078 | 0.3924 | 0.4078 | 0.3931 |
No log | 3.0 | 45 | 1.1933 | 0.3495 | 0.3332 | 0.3495 | 0.2510 |
No log | 4.0 | 60 | 1.0654 | 0.3398 | 0.3309 | 0.3398 | 0.3204 |
No log | 5.0 | 75 | 1.0364 | 0.4272 | 0.3839 | 0.4272 | 0.4044 |
No log | 6.0 | 90 | 1.2203 | 0.3301 | 0.3195 | 0.3301 | 0.3023 |
No log | 7.0 | 105 | 1.3716 | 0.2913 | 0.2580 | 0.2913 | 0.2355 |
No log | 8.0 | 120 | 1.3235 | 0.3204 | 0.3152 | 0.3204 | 0.2993 |
No log | 9.0 | 135 | 1.3099 | 0.3592 | 0.3490 | 0.3592 | 0.3471 |
No log | 10.0 | 150 | 1.4075 | 0.2913 | 0.2838 | 0.2913 | 0.2609 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jab11769/kbank-finetune-bert2
Base model
google-bert/bert-base-multilingual-uncased