jab11769's picture
KBANK-finetune-wangchan2
ff9701c verified
metadata
library_name: transformers
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: KBANK-finetune-wangchan2
    results: []

KBANK-finetune-wangchan2

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0220
  • Accuracy: 0.4078
  • Precision: 0.3996
  • Recall: 0.4078
  • F1: 0.3891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 15 0.9362 0.5534 0.4303 0.5534 0.4286
No log 2.0 30 0.9895 0.4757 0.4461 0.4757 0.4563
No log 3.0 45 0.9732 0.4757 0.4209 0.4757 0.4458
No log 4.0 60 0.9737 0.4175 0.3414 0.4175 0.3717
No log 5.0 75 1.0453 0.4078 0.4099 0.4078 0.3739
No log 6.0 90 1.0218 0.4175 0.4126 0.4175 0.3950
No log 7.0 105 1.0220 0.4078 0.3996 0.4078 0.3891

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1