scb-finetune-bert2

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1107
  • Accuracy: 0.4038
  • Precision: 0.3823
  • Recall: 0.4038
  • F1: 0.3871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 15 1.0576 0.4423 0.1956 0.4423 0.2713
No log 2.0 30 1.0491 0.4327 0.1932 0.4327 0.2672
No log 3.0 45 1.0501 0.3654 0.3072 0.3654 0.2828
No log 4.0 60 1.0507 0.4327 0.3536 0.4327 0.3849
No log 5.0 75 1.0697 0.375 0.3150 0.375 0.3423
No log 6.0 90 1.0865 0.4423 0.3999 0.4423 0.3812
No log 7.0 105 1.0720 0.375 0.3639 0.375 0.3526
No log 8.0 120 1.1018 0.4327 0.4044 0.4327 0.3992
No log 9.0 135 1.1086 0.4327 0.4083 0.4327 0.4107
No log 10.0 150 1.1107 0.4038 0.3823 0.4038 0.3871

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
167M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jab11769/scb-finetune-bert2

Finetuned
(1792)
this model