|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_deepseek |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_deepseek |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3360 |
|
- Accuracy: 0.8824 |
|
- F1: 0.9231 |
|
- Precision: 0.9231 |
|
- Recall: 0.9231 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6891 | 1.0 | 46 | 0.9745 | 0.7 | 0.8235 | 0.7 | 1.0 | |
|
| 0.5473 | 2.0 | 92 | 0.5183 | 0.7 | 0.8235 | 0.7 | 1.0 | |
|
| 0.3445 | 3.0 | 138 | 0.3540 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.1769 | 4.0 | 184 | 0.5051 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0387 | 5.0 | 230 | 0.6412 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0116 | 6.0 | 276 | 0.2695 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0005 | 7.0 | 322 | 0.8522 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0 | 8.0 | 368 | 0.5587 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0 | 9.0 | 414 | 0.5669 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0 | 10.0 | 460 | 0.5103 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
| 0.0 | 11.0 | 506 | 0.5969 | 0.9 | 0.9333 | 0.875 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|