Virtual Cleint

client

example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer

MODEL_ID = "jaeyong2/Virtual-Client-Preview"

torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch_dtype,
    device_map="auto",
)

persona = "Pilates trainer with extensive gym experience"
messages = [
    {"role": "system", "content": "You are a question-generating AI that receives personas from users and generates the most appropriate questions"},
    {"role": "user", "content": persona}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

result

What are some of the key principles you follow when designing a new workout program?

How to make dataset

dataset

License

Acknowledgement

This research is supported by TPU Research Cloud program.

Downloads last month
3
Safetensors
Model size
2B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jaeyong2/Virtual-Client

Quantizations
1 model