See axolotl config
axolotl version: 0.4.0
base_model: Qwen/Qwen1.5-MoE-A2.7B
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 1024 # supports up to 32k
sample_packing: false
pad_to_sequence_len: false
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
out
This model is a fine-tuned version of Qwen/Qwen1.5-MoE-A2.7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8629 | 0.0 | 1 | 0.9370 |
0.6917 | 0.25 | 119 | 0.8805 |
0.9783 | 0.5 | 238 | 0.8783 |
0.9578 | 0.75 | 357 | 0.8827 |
0.4772 | 1.0 | 476 | 0.8900 |
0.4653 | 1.25 | 595 | 0.9620 |
0.5907 | 1.5 | 714 | 0.9532 |
0.7364 | 1.75 | 833 | 0.9360 |
0.2611 | 2.0 | 952 | 0.9570 |
0.1999 | 2.25 | 1071 | 1.0415 |
0.1532 | 2.51 | 1190 | 1.0776 |
0.0455 | 2.76 | 1309 | 1.0920 |
0.087 | 3.01 | 1428 | 1.1094 |
0.0183 | 3.26 | 1547 | 1.2266 |
0.0135 | 3.51 | 1666 | 1.2604 |
0.1929 | 3.76 | 1785 | 1.2553 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for jayzeng/llm-fun
Base model
Qwen/Qwen1.5-MoE-A2.7B