File size: 7,680 Bytes
54f5840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
license: mit
pipeline_tag: image-segmentation
library_name: transformers
---

# MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder

This repository contains the `MLLMSeg_InternVL2_5_8B_RES` model presented in the paper [Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder](https://huggingface.co/papers/2508.04107).

Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions. While Multimodal Large Language Models (MLLMs) excel in semantic understanding, their token-generation paradigm often struggles with pixel-level dense prediction. MLLMSeg addresses this by fully exploiting the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. It proposes a detail-enhanced and semantic-consistent feature fusion module (DSFF) and establishes a light-weight mask decoder (only 34M network parameters) to optimally leverage detailed spatial features and semantic features for precise mask prediction. Extensive experiments demonstrate that MLLMSeg generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost.

Code: https://github.com/jcwang0602/MLLMSeg

<p align="center">
  <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/method.png" width="800">
</p>

## Usage

You can use this model with the `transformers` library. Below is an example demonstrating how to load and use the `MLLMSeg_InternVL2_5_8B_RES` model for inference.

```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
import requests
from io import BytesIO

# Define image preprocessing utility functions
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    if image_file.startswith(('http://', 'https://')):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

# Load model and tokenizer
model_path = "jcwang0602/MLLMSeg_InternVL2_5_8B_RES"
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)

# Load an example image (replace with your image path or URL)
image_path = "https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res_0.png" # Example image from the repo
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()

# Define the referring expression
question = "Please segment the person in the screenshot."

# Set generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, temperature=0.0)

# Generate response and segmentation mask
# The output_segmentation_mask=True parameter is crucial for getting the mask directly.
response, history, pred_mask = model.chat(
    tokenizer, pixel_values, question, generation_config, history=None, return_history=True, output_segmentation_mask=True
)

print(f'User: {question}\
Assistant: {response}')
# `pred_mask` will contain the predicted segmentation mask. It's a torch.Tensor.
# You can save or visualize it. For example, to save it as an image:
# from torchvision.utils import save_image
# save_image(pred_mask.float(), "segmentation_mask.png")
```

## Performance Metrics

### Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_res.png" width="800">

### Referring Expression Comprehension
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_rec.png" width="800">

### Generalized Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_gres.png" width="800">

## Visualization
### Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res.png" width="800">

### Referring Expression Comprehension
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/rec.png" width="800">

### Generalized Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/gres.png" width="800">

## Citation

If our work is useful for your research, please consider citing:

```bibtex
@misc{wang2025unlockingpotentialmllmsreferring,
      title={Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder}, 
      author={Jingchao Wang and Zhijian Wu and Dingjiang Huang and Yefeng Zheng and Hong Wang},
      year={2025},
      eprint={2508.04107},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2508.04107}, 
}
```