Upload folder using huggingface_hub

#4
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.bin*.safetensors*.pt  filter=lfs diff=lfs merge=lfs -text
37
+ .ipynb_checkpoints/tokenizer-checkpoint.json filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/args-checkpoint.json ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_dir": "./output",
3
+ "overwrite_output_dir": false,
4
+ "do_train": false,
5
+ "do_eval": false,
6
+ "do_predict": false,
7
+ "eval_strategy": "no",
8
+ "prediction_loss_only": false,
9
+ "per_device_train_batch_size": 1,
10
+ "per_device_eval_batch_size": 1,
11
+ "per_gpu_train_batch_size": null,
12
+ "per_gpu_eval_batch_size": null,
13
+ "gradient_accumulation_steps": 7,
14
+ "eval_accumulation_steps": null,
15
+ "eval_delay": 0,
16
+ "torch_empty_cache_steps": null,
17
+ "learning_rate": 5e-06,
18
+ "weight_decay": 0.1,
19
+ "adam_beta1": 0.9,
20
+ "adam_beta2": 0.95,
21
+ "adam_epsilon": 1e-08,
22
+ "max_grad_norm": 1.0,
23
+ "num_train_epochs": 6.0,
24
+ "max_steps": -1,
25
+ "lr_scheduler_type": "cosine",
26
+ "lr_scheduler_kwargs": null,
27
+ "warmup_ratio": 0.05,
28
+ "warmup_steps": 0,
29
+ "log_level": "passive",
30
+ "log_level_replica": "warning",
31
+ "log_on_each_node": true,
32
+ "logging_dir": "./output/logs",
33
+ "logging_strategy": "steps",
34
+ "logging_first_step": true,
35
+ "logging_steps": 5,
36
+ "logging_nan_inf_filter": true,
37
+ "save_strategy": "steps",
38
+ "save_steps": 1609.0,
39
+ "save_total_limit": 10,
40
+ "save_safetensors": true,
41
+ "save_on_each_node": false,
42
+ "save_only_model": false,
43
+ "restore_callback_states_from_checkpoint": false,
44
+ "no_cuda": false,
45
+ "use_cpu": false,
46
+ "use_mps_device": false,
47
+ "seed": 42,
48
+ "data_seed": 42,
49
+ "jit_mode_eval": false,
50
+ "use_ipex": false,
51
+ "bf16": true,
52
+ "fp16": false,
53
+ "fp16_opt_level": "O1",
54
+ "half_precision_backend": "auto",
55
+ "bf16_full_eval": false,
56
+ "fp16_full_eval": false,
57
+ "tf32": null,
58
+ "local_rank": 0,
59
+ "ddp_backend": null,
60
+ "tpu_num_cores": null,
61
+ "tpu_metrics_debug": false,
62
+ "debug": null,
63
+ "dataloader_drop_last": false,
64
+ "eval_steps": 1609.0,
65
+ "dataloader_num_workers": 192,
66
+ "dataloader_prefetch_factor": null,
67
+ "past_index": -1,
68
+ "run_name": "safety-model-training",
69
+ "disable_tqdm": null,
70
+ "remove_unused_columns": true,
71
+ "label_names": null,
72
+ "load_best_model_at_end": false,
73
+ "metric_for_best_model": "loss",
74
+ "greater_is_better": false,
75
+ "ignore_data_skip": false,
76
+ "fsdp": "",
77
+ "fsdp_min_num_params": 0,
78
+ "fsdp_config": null,
79
+ "fsdp_transformer_layer_cls_to_wrap": null,
80
+ "accelerator_config": {
81
+ "dispatch_batches": false
82
+ },
83
+ "deepspeed": {
84
+ "fp16": {
85
+ "enabled": "auto",
86
+ "loss_scale": 0,
87
+ "loss_scale_window": 1000,
88
+ "initial_scale_power": 16,
89
+ "hysteresis": 2,
90
+ "min_loss_scale": 1
91
+ },
92
+ "bf16": {
93
+ "enabled": "auto"
94
+ },
95
+ "zero_optimization": {
96
+ "stage": 3,
97
+ "offload_optimizer": {
98
+ "device": "none",
99
+ "pin_memory": true
100
+ },
101
+ "offload_param": {
102
+ "device": "none",
103
+ "pin_memory": true
104
+ },
105
+ "overlap_comm": false,
106
+ "contiguous_gradients": true,
107
+ "sub_group_size": 1000000000.0,
108
+ "reduce_bucket_size": "auto",
109
+ "zero_quantized_weights": false,
110
+ "zero_quantized_gradients": false,
111
+ "stage3_prefetch_bucket_size": "auto",
112
+ "stage3_param_persistence_threshold": "auto",
113
+ "stage3_max_live_parameters": 1000000000.0,
114
+ "stage3_max_reuse_distance": 1000000000.0,
115
+ "stage3_gather_16bit_weights_on_model_save": true
116
+ },
117
+ "gradient_accumulation_steps": "auto",
118
+ "gradient_clipping": "auto",
119
+ "steps_per_print": 2000,
120
+ "train_batch_size": "auto",
121
+ "train_micro_batch_size_per_gpu": "auto",
122
+ "wall_clock_breakdown": false
123
+ },
124
+ "label_smoothing_factor": 0.0,
125
+ "optim": "adamw_torch",
126
+ "optim_args": null,
127
+ "adafactor": false,
128
+ "group_by_length": false,
129
+ "length_column_name": "length",
130
+ "report_to": [
131
+ "tensorboard"
132
+ ],
133
+ "ddp_find_unused_parameters": null,
134
+ "ddp_bucket_cap_mb": null,
135
+ "ddp_broadcast_buffers": null,
136
+ "dataloader_pin_memory": true,
137
+ "dataloader_persistent_workers": false,
138
+ "skip_memory_metrics": true,
139
+ "use_legacy_prediction_loop": false,
140
+ "push_to_hub": false,
141
+ "resume_from_checkpoint": null,
142
+ "hub_model_id": null,
143
+ "hub_strategy": "every_save",
144
+ "hub_token": null,
145
+ "hub_private_repo": null,
146
+ "hub_always_push": false,
147
+ "hub_revision": null,
148
+ "gradient_checkpointing": true,
149
+ "gradient_checkpointing_kwargs": null,
150
+ "include_inputs_for_metrics": false,
151
+ "include_for_metrics": [],
152
+ "eval_do_concat_batches": true,
153
+ "fp16_backend": "auto",
154
+ "push_to_hub_model_id": null,
155
+ "push_to_hub_organization": null,
156
+ "push_to_hub_token": null,
157
+ "mp_parameters": "",
158
+ "auto_find_batch_size": false,
159
+ "full_determinism": false,
160
+ "torchdynamo": null,
161
+ "ray_scope": "last",
162
+ "ddp_timeout": 18000000,
163
+ "torch_compile": false,
164
+ "torch_compile_backend": null,
165
+ "torch_compile_mode": null,
166
+ "include_tokens_per_second": false,
167
+ "include_num_input_tokens_seen": false,
168
+ "neftune_noise_alpha": null,
169
+ "optim_target_modules": null,
170
+ "batch_eval_metrics": false,
171
+ "eval_on_start": false,
172
+ "use_liger_kernel": false,
173
+ "liger_kernel_config": null,
174
+ "eval_use_gather_object": false,
175
+ "average_tokens_across_devices": true,
176
+ "sortish_sampler": false,
177
+ "predict_with_generate": false,
178
+ "generation_max_length": null,
179
+ "generation_num_beams": null,
180
+ "generation_config": null,
181
+ "vit_gradient_checkpointing": null,
182
+ "check_model": true,
183
+ "acc_strategy": "token",
184
+ "train_dataloader_shuffle": true,
185
+ "max_epochs": null,
186
+ "aligner_lr": null,
187
+ "vit_lr": null,
188
+ "optimizer": null,
189
+ "use_logits_to_keep": null,
190
+ "channels": null,
191
+ "ds3_gather_for_generation": true,
192
+ "metric_warmup_step": 0,
193
+ "fsdp_num": 1,
194
+ "acc_steps": 1,
195
+ "eval_use_evalscope": false,
196
+ "eval_dataset": [],
197
+ "eval_dataset_args": null,
198
+ "eval_limit": null,
199
+ "eval_generation_config": null,
200
+ "model": "JSL-joysafety-v1/gpt-oss-20b",
201
+ "model_type": null,
202
+ "model_revision": null,
203
+ "task_type": "causal_lm",
204
+ "torch_dtype": "bfloat16",
205
+ "attn_impl": "flash_attn",
206
+ "num_labels": null,
207
+ "problem_type": null,
208
+ "rope_scaling": {
209
+ "beta_fast": 32.0,
210
+ "beta_slow": 1.0,
211
+ "factor": 32.0,
212
+ "original_max_position_embeddings": 4096,
213
+ "rope_type": "yarn",
214
+ "truncate": false,
215
+ "type": "yarn"
216
+ },
217
+ "device_map": null,
218
+ "max_memory": {},
219
+ "local_repo_path": null,
220
+ "init_strategy": null,
221
+ "template": "default",
222
+ "system": null,
223
+ "max_length": 8192,
224
+ "truncation_strategy": "right",
225
+ "max_pixels": null,
226
+ "agent_template": null,
227
+ "norm_bbox": null,
228
+ "use_chat_template": true,
229
+ "padding_free": false,
230
+ "padding_side": "right",
231
+ "loss_scale": "default",
232
+ "sequence_parallel_size": 1,
233
+ "response_prefix": null,
234
+ "template_backend": "swift",
235
+ "dataset": [
236
+ "JSL-joysafety-v1/safety-dataset"
237
+ ],
238
+ "val_dataset": [],
239
+ "split_dataset_ratio": 0.0,
240
+ "dataset_num_proc": 192,
241
+ "load_from_cache_file": true,
242
+ "dataset_shuffle": true,
243
+ "val_dataset_shuffle": false,
244
+ "streaming": false,
245
+ "interleave_prob": null,
246
+ "stopping_strategy": "first_exhausted",
247
+ "shuffle_buffer_size": 1000,
248
+ "download_mode": "reuse_dataset_if_exists",
249
+ "columns": {},
250
+ "strict": false,
251
+ "model_name": null,
252
+ "model_author": null,
253
+ "custom_dataset_info": [],
254
+ "quant_method": null,
255
+ "quant_bits": null,
256
+ "hqq_axis": null,
257
+ "bnb_4bit_compute_dtype": "bfloat16",
258
+ "bnb_4bit_quant_type": "nf4",
259
+ "bnb_4bit_use_double_quant": true,
260
+ "bnb_4bit_quant_storage": null,
261
+ "max_new_tokens": 64,
262
+ "temperature": 0.0,
263
+ "top_k": null,
264
+ "top_p": null,
265
+ "repetition_penalty": null,
266
+ "num_beams": 1,
267
+ "stream": false,
268
+ "stop_words": [],
269
+ "logprobs": false,
270
+ "top_logprobs": null,
271
+ "ckpt_dir": null,
272
+ "lora_modules": [],
273
+ "tuner_backend": "peft",
274
+ "train_type": "full",
275
+ "adapters": [],
276
+ "external_plugins": [],
277
+ "model_kwargs": {},
278
+ "load_args": false,
279
+ "load_data_args": false,
280
+ "packing": false,
281
+ "packing_cache": null,
282
+ "custom_register_path": [],
283
+ "use_hf": false,
284
+ "ignore_args_error": false,
285
+ "use_swift_lora": false,
286
+ "freeze_parameters": [],
287
+ "freeze_parameters_regex": null,
288
+ "freeze_parameters_ratio": 0.0,
289
+ "trainable_parameters": [],
290
+ "trainable_parameters_regex": null,
291
+ "freeze_llm": false,
292
+ "freeze_vit": true,
293
+ "freeze_aligner": true,
294
+ "target_modules": [
295
+ "all-linear"
296
+ ],
297
+ "target_regex": null,
298
+ "modules_to_save": [],
299
+ "lora_rank": 8,
300
+ "lora_alpha": 32,
301
+ "lora_dropout": 0.05,
302
+ "lora_bias": "none",
303
+ "lora_dtype": null,
304
+ "lorap_lr_ratio": null,
305
+ "use_rslora": false,
306
+ "use_dora": false,
307
+ "lora_ga_batch_size": 2,
308
+ "lora_ga_iters": 2,
309
+ "lora_ga_max_length": 1024,
310
+ "lora_ga_direction": "ArB2r",
311
+ "lora_ga_scale": "stable",
312
+ "lora_ga_stable_gamma": 16,
313
+ "init_weights": true,
314
+ "fourier_n_frequency": 2000,
315
+ "fourier_scaling": 300.0,
316
+ "boft_block_size": 4,
317
+ "boft_block_num": 0,
318
+ "boft_n_butterfly_factor": 1,
319
+ "boft_dropout": 0.0,
320
+ "vera_rank": 256,
321
+ "vera_projection_prng_key": 0,
322
+ "vera_dropout": 0.0,
323
+ "vera_d_initial": 0.1,
324
+ "adapter_act": "gelu",
325
+ "adapter_length": 128,
326
+ "use_galore": false,
327
+ "galore_target_modules": null,
328
+ "galore_rank": 128,
329
+ "galore_update_proj_gap": 50,
330
+ "galore_scale": 1.0,
331
+ "galore_proj_type": "std",
332
+ "galore_optim_per_parameter": false,
333
+ "galore_with_embedding": false,
334
+ "galore_quantization": false,
335
+ "galore_proj_quant": false,
336
+ "galore_proj_bits": 4,
337
+ "galore_proj_group_size": 256,
338
+ "galore_cos_threshold": 0.4,
339
+ "galore_gamma_proj": 2,
340
+ "galore_queue_size": 5,
341
+ "adalora_target_r": 8,
342
+ "adalora_init_r": 12,
343
+ "adalora_tinit": 0,
344
+ "adalora_tfinal": 0,
345
+ "adalora_deltaT": 1,
346
+ "adalora_beta1": 0.85,
347
+ "adalora_beta2": 0.85,
348
+ "adalora_orth_reg_weight": 0.5,
349
+ "llamapro_num_new_blocks": 4,
350
+ "llamapro_num_groups": null,
351
+ "lisa_activated_layers": 0,
352
+ "lisa_step_interval": 20,
353
+ "reft_layer_key": null,
354
+ "reft_layers": null,
355
+ "reft_rank": 4,
356
+ "reft_intervention_type": "LoreftIntervention",
357
+ "reft_args": null,
358
+ "swanlab_token": null,
359
+ "swanlab_project": null,
360
+ "swanlab_workspace": null,
361
+ "swanlab_exp_name": null,
362
+ "swanlab_lark_webhook_url": null,
363
+ "swanlab_lark_secret": null,
364
+ "swanlab_mode": "cloud",
365
+ "add_version": true,
366
+ "resume_only_model": false,
367
+ "create_checkpoint_symlink": false,
368
+ "lazy_tokenize": false,
369
+ "loss_type": null,
370
+ "metric": null,
371
+ "zero_hpz_partition_size": null,
372
+ "rank": 0,
373
+ "global_world_size": 40,
374
+ "local_world_size": 8,
375
+ "model_suffix": "gpt-oss-20b",
376
+ "model_meta": "ModelMeta(model_type=None, model_groups=[], template='dummy', get_function=<function get_model_tokenizer_from_local at 0x7f67a0a7b130>, model_arch=None, architectures=[], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=[], tags=[])",
377
+ "model_dir": "/mnt/workspace/public_model/gpt-oss-20b",
378
+ "evaluation_strategy": "steps"
379
+ }
.ipynb_checkpoints/chat_template-checkpoint.jinja ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{\n" }}
88
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
89
+ {{- prop_name -}}
90
+ {%- if prop_name not in (param_spec.required or []) -%}
91
+ {{- "?" }}
92
+ {%- endif -%}
93
+ {{- ": " }}
94
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
95
+ {%- if not loop.last -%}
96
+ {{-", " }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+ {{- "}" }}
100
+ {%- else -%}
101
+ {{- "object" }}
102
+ {%- endif -%}
103
+ {%- else -%}
104
+ {{- "any" }}
105
+ {%- endif -%}
106
+ {%- endmacro -%}
107
+
108
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
109
+ {{- "## " + namespace_name + "\n\n" }}
110
+ {{- "namespace " + namespace_name + " {\n\n" }}
111
+ {%- for tool in tools %}
112
+ {%- set tool = tool.function %}
113
+ {{- "// " + tool.description + "\n" }}
114
+ {{- "type "+ tool.name + " = " }}
115
+ {%- if tool.parameters and tool.parameters.properties %}
116
+ {{- "(_: {\n" }}
117
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
118
+ {%- if param_spec.description %}
119
+ {{- "// " + param_spec.description + "\n" }}
120
+ {%- endif %}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- ",\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {%- set model_identity = "\n\n你是一名「大模型内容安全审核专家」,请根据下面的风险审核checklist完成风险审核;\n\n#【任务描述】:\n\n 在 AI 对话场景中,完成用户输入与大模型回答安全审核,识别其中是否存在风险内容及诱导性风险。\n \n# 【注意事项】:\n 1. 按照《生成式人工智能服务管理暂行办法》进行风险审核; \n 2. 输出仅返回 JSON,不要附加任何解释性文字。 \n\n# 【风险审核-checklist】:\n\n 判断用户输入是否存在以下风险类型:涉政、暴恐、涉黄、涉赌、涉毒、辱骂、违禁、歧视、其他侵犯他人权益、其他商业违法违规等相关风险;无任何风险则归类为“正常文本”\n\n**输出格式**(JSON,禁止省略任何字段):\n\n```json\n{\n \"reason\":\"cot分析过程\",\n \"risk_level\": 无风险|低风险|中风险|高风险, \n \"hit_categories\": [\"****\",\"****:],\n \"hit_detaile_categories\":[\"****\",\"****\"]\n \"risk_tags\"[] \n \"risk_roler\":\"user|\"ai\"|\"user&ai\",\n \"hit_keywords\": [\"xxx\"], \n \"suggestion\": \"pass\"|\"mask\"|\"block\"|\"review\"|\"proxy_answer\"\n}\n```\n**输出格式声明**\n reason:存放推理过程;\n risk_level:存放风险级别,分成四档:无风险|低风险|中风险|高风险;\n hit_categories:存放识别到的一级风险类别标签;\n hit_detaile_categories:存放识别到的二级风险类别标签;\n risk_tags:详细风险类型;\n risk_roler:存放对话中触发风险角色,user代表用户输入有风险,user&ai代表用户输入大模型回复都有风险,ai代表大模型回复有风险;\n hit_keywords:触发风险的原文片段;\n suggestion:建议处置策略;\n" %}
199
+ {%- endif %}
200
+ {{- model_identity + "\n" }}
201
+ {{- "Knowledge cutoff: 2024-06\n" }}
202
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
203
+ {%- if reasoning_effort is not defined %}
204
+ {%- set reasoning_effort = "medium" %}
205
+ {%- endif %}
206
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
207
+ {%- if builtin_tools %}
208
+ {{- "# Tools\n\n" }}
209
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
210
+ {%- for tool in builtin_tools %}
211
+ {%- if tool == "browser" %}
212
+ {%- set available_builtin_tools.browser = true %}
213
+ {%- elif tool == "python" %}
214
+ {%- set available_builtin_tools.python = true %}
215
+ {%- endif %}
216
+ {%- endfor %}
217
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
218
+ {%- endif -%}
219
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
220
+ {%- if tools -%}
221
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
222
+ {%- endif -%}
223
+ {%- endmacro -%}
224
+
225
+ {#- Main Template Logic ================================================= #}
226
+ {#- Set defaults #}
227
+
228
+ {#- Render system message #}
229
+ {{- "<|start|>system<|message|>" }}
230
+ {{- build_system_message() }}
231
+ {{- "<|end|>" }}
232
+
233
+ {#- Extract developer message #}
234
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
235
+ {%- set developer_message = messages[0].content %}
236
+ {%- set loop_messages = messages[1:] %}
237
+ {%- else %}
238
+ {%- set developer_message = "" %}
239
+ {%- set loop_messages = messages %}
240
+ {%- endif %}
241
+
242
+ {#- Render developer message #}
243
+ {%- if developer_message or tools %}
244
+ {{- "<|start|>developer<|message|>" }}
245
+ {%- if developer_message %}
246
+ {{- "# Instructions\n\n" }}
247
+ {{- developer_message }}
248
+ {{- "\n\n" }}
249
+ {%- endif %}
250
+ {%- if tools -%}
251
+ {{- "# Tools\n\n" }}
252
+ {{- render_tool_namespace("functions", tools) }}
253
+ {%- endif -%}
254
+ {{- "<|end|>" }}
255
+ {%- endif %}
256
+
257
+ {#- Render messages #}
258
+ {%- set last_tool_call = namespace(name=none) %}
259
+ {%- for message in loop_messages -%}
260
+ {#- At this point only assistant/user/tool messages should remain #}
261
+ {%- if message.role == 'assistant' -%}
262
+ {#- Checks to ensure the messages are being passed in the format we expect #}
263
+ {%- if "content" in message %}
264
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
265
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
266
+ {%- endif %}
267
+ {%- endif %}
268
+ {%- if "thinking" in message %}
269
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
270
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
271
+ {%- endif %}
272
+ {%- endif %}
273
+ {%- if "tool_calls" in message %}
274
+ {#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
275
+ {#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
276
+ {#- when we render CoT/analysis messages in inference. #}
277
+ {%- set future_final_message = namespace(found=false) %}
278
+ {%- for future_message in loop_messages[loop.index:] %}
279
+ {%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
280
+ {%- set future_final_message.found = true %}
281
+ {%- endif %}
282
+ {%- endfor %}
283
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
284
+ {#- in "tool" messages from the most recent assistant tool call name #}
285
+ {%- set tool_call = message.tool_calls[0] %}
286
+ {%- if tool_call.function %}
287
+ {%- set tool_call = tool_call.function %}
288
+ {%- endif %}
289
+ {%- if message.content and message.thinking %}
290
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
291
+ {%- elif message.content and not future_final_message.found %}
292
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
293
+ {%- elif message.thinking and not future_final_message.found %}
294
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
295
+ {%- endif %}
296
+ {{- "<|start|>assistant to=" }}
297
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
298
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
299
+ {{- tool_call.arguments|tojson }}
300
+ {{- "<|call|>" }}
301
+ {%- set last_tool_call.name = tool_call.name %}
302
+ {%- elif loop.last and not add_generation_prompt %}
303
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
304
+ {#- This is a situation that should only occur in training, never in inference. #}
305
+ {%- if "thinking" in message %}
306
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
307
+ {%- endif %}
308
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
309
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
310
+ {#- when training, so the model learns to emit it. #}
311
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
312
+ {%- else %}
313
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
314
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
315
+ {%- set last_tool_call.name = none %}
316
+ {%- endif %}
317
+ {%- elif message.role == 'tool' -%}
318
+ {%- if last_tool_call.name is none %}
319
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
320
+ {%- endif %}
321
+ {{- "<|start|>functions." + last_tool_call.name }}
322
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
323
+ {%- elif message.role == 'user' -%}
324
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
325
+ {%- endif -%}
326
+ {%- endfor -%}
327
+
328
+ {#- Generation prompt #}
329
+ {%- if add_generation_prompt -%}
330
+ <|start|>assistant
331
+ {%- endif -%}
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GptOssForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 200002,
8
+ "experts_per_token": 4,
9
+ "head_dim": 64,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2880,
12
+ "initial_context_length": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 2880,
15
+ "keys_to_ignore_at_inference": [
16
+ "past_key_values"
17
+ ],
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "full_attention",
21
+ "sliding_attention",
22
+ "full_attention",
23
+ "sliding_attention",
24
+ "full_attention",
25
+ "sliding_attention",
26
+ "full_attention",
27
+ "sliding_attention",
28
+ "full_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "full_attention",
33
+ "sliding_attention",
34
+ "full_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "full_attention",
39
+ "sliding_attention",
40
+ "full_attention",
41
+ "sliding_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 131072,
45
+ "model_type": "gpt_oss",
46
+ "num_attention_heads": 64,
47
+ "num_experts_per_tok": 4,
48
+ "num_hidden_layers": 24,
49
+ "num_key_value_heads": 8,
50
+ "num_local_experts": 32,
51
+ "output_router_logits": false,
52
+ "pad_token_id": 199999,
53
+ "rms_norm_eps": 1e-05,
54
+ "rope_scaling": {
55
+ "beta_fast": 32.0,
56
+ "beta_slow": 1.0,
57
+ "factor": 32.0,
58
+ "original_max_position_embeddings": 4096,
59
+ "rope_type": "yarn",
60
+ "truncate": false,
61
+ "type": "yarn"
62
+ },
63
+ "rope_theta": 150000,
64
+ "router_aux_loss_coef": 0.9,
65
+ "sliding_window": 128,
66
+ "swiglu_limit": 7.0,
67
+ "tie_word_embeddings": false,
68
+ "torch_dtype": "bfloat16",
69
+ "transformers_version": "4.55.0",
70
+ "use_cache": false,
71
+ "vocab_size": 201088
72
+ }
.ipynb_checkpoints/generation_config-checkpoint.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 199998,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 200002,
6
+ 199999,
7
+ 200012
8
+ ],
9
+ "pad_token_id": 199999,
10
+ "transformers_version": "4.55.0"
11
+ }
.ipynb_checkpoints/special_tokens_map-checkpoint.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
.ipynb_checkpoints/tokenizer-checkpoint.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
.ipynb_checkpoints/tokenizer_config-checkpoint.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "tokenizer_class": "PreTrainedTokenizerFast"
183
+ }
.msc ADDED
Binary file (2.15 kB). View file
 
.mv ADDED
@@ -0,0 +1 @@
 
 
1
+ Revision:master,CreatedAt:1758679619
README.md CHANGED
@@ -1,3 +1,48 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags: []
4
+
5
+ #model-type:
6
+ ##如 gpt、phi、llama、chatglm、baichuan 等
7
+ #- gpt
8
+
9
+ #domain:
10
+ ##如 nlp、cv、audio、multi-modal
11
+ #- nlp
12
+
13
+ #language:
14
+ ##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
15
+ #- cn
16
+
17
+ #metrics:
18
+ ##如 CIDEr、Blue、ROUGE 等
19
+ #- CIDEr
20
+
21
+ #tags:
22
+ ##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
23
+ #- pretrained
24
+
25
+ #tools:
26
+ ##如 vllm、fastchat、llamacpp、AdaSeq 等
27
+ #- vllm
28
+ ---
29
+ ### 当前模型的贡献者未提供更加详细的模型介绍。模型文件和权重,可浏览“模型文件”页面获取。
30
+ #### 您可以通过如下git clone命令,或者ModelScope SDK来下载模型
31
+
32
+ SDK下载
33
+ ```bash
34
+ #安装ModelScope
35
+ pip install modelscope
36
+ ```
37
+ ```python
38
+ #SDK模型下载
39
+ from modelscope import snapshot_download
40
+ model_dir = snapshot_download('LambdaJder/JSL-joysafety-v1')
41
+ ```
42
+ Git下载
43
+ ```
44
+ #Git模型下载
45
+ git clone https://www.modelscope.cn/LambdaJder/JSL-joysafety-v1.git
46
+ ```
47
+
48
+ <p style="color: lightgrey;">如果您是本模型的贡献者,我们邀请您根据<a href="https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88" style="color: lightgrey; text-decoration: underline;">模型贡献文档</a>,及时完善模型卡片内容。</p>
args.json ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_dir": "./output",
3
+ "overwrite_output_dir": false,
4
+ "do_train": false,
5
+ "do_eval": false,
6
+ "do_predict": false,
7
+ "eval_strategy": "no",
8
+ "prediction_loss_only": false,
9
+ "per_device_train_batch_size": 1,
10
+ "per_device_eval_batch_size": 1,
11
+ "per_gpu_train_batch_size": null,
12
+ "per_gpu_eval_batch_size": null,
13
+ "gradient_accumulation_steps": 7,
14
+ "eval_accumulation_steps": null,
15
+ "eval_delay": 0,
16
+ "torch_empty_cache_steps": null,
17
+ "learning_rate": 5e-06,
18
+ "weight_decay": 0.1,
19
+ "adam_beta1": 0.9,
20
+ "adam_beta2": 0.95,
21
+ "adam_epsilon": 1e-08,
22
+ "max_grad_norm": 1.0,
23
+ "num_train_epochs": 6.0,
24
+ "max_steps": -1,
25
+ "lr_scheduler_type": "cosine",
26
+ "lr_scheduler_kwargs": null,
27
+ "warmup_ratio": 0.05,
28
+ "warmup_steps": 0,
29
+ "log_level": "passive",
30
+ "log_level_replica": "warning",
31
+ "log_on_each_node": true,
32
+ "logging_dir": "./output/logs",
33
+ "logging_strategy": "steps",
34
+ "logging_first_step": true,
35
+ "logging_steps": 5,
36
+ "logging_nan_inf_filter": true,
37
+ "save_strategy": "steps",
38
+ "save_steps": 1609.0,
39
+ "save_total_limit": 10,
40
+ "save_safetensors": true,
41
+ "save_on_each_node": false,
42
+ "save_only_model": false,
43
+ "restore_callback_states_from_checkpoint": false,
44
+ "no_cuda": false,
45
+ "use_cpu": false,
46
+ "use_mps_device": false,
47
+ "seed": 42,
48
+ "data_seed": 42,
49
+ "jit_mode_eval": false,
50
+ "use_ipex": false,
51
+ "bf16": true,
52
+ "fp16": false,
53
+ "fp16_opt_level": "O1",
54
+ "half_precision_backend": "auto",
55
+ "bf16_full_eval": false,
56
+ "fp16_full_eval": false,
57
+ "tf32": null,
58
+ "local_rank": 0,
59
+ "ddp_backend": null,
60
+ "tpu_num_cores": null,
61
+ "tpu_metrics_debug": false,
62
+ "debug": null,
63
+ "dataloader_drop_last": false,
64
+ "eval_steps": 1609.0,
65
+ "dataloader_num_workers": 192,
66
+ "dataloader_prefetch_factor": null,
67
+ "past_index": -1,
68
+ "run_name": "safety-model-training",
69
+ "disable_tqdm": null,
70
+ "remove_unused_columns": true,
71
+ "label_names": null,
72
+ "load_best_model_at_end": false,
73
+ "metric_for_best_model": "loss",
74
+ "greater_is_better": false,
75
+ "ignore_data_skip": false,
76
+ "fsdp": "",
77
+ "fsdp_min_num_params": 0,
78
+ "fsdp_config": null,
79
+ "fsdp_transformer_layer_cls_to_wrap": null,
80
+ "accelerator_config": {
81
+ "dispatch_batches": false
82
+ },
83
+ "deepspeed": {
84
+ "fp16": {
85
+ "enabled": "auto",
86
+ "loss_scale": 0,
87
+ "loss_scale_window": 1000,
88
+ "initial_scale_power": 16,
89
+ "hysteresis": 2,
90
+ "min_loss_scale": 1
91
+ },
92
+ "bf16": {
93
+ "enabled": "auto"
94
+ },
95
+ "zero_optimization": {
96
+ "stage": 3,
97
+ "offload_optimizer": {
98
+ "device": "none",
99
+ "pin_memory": true
100
+ },
101
+ "offload_param": {
102
+ "device": "none",
103
+ "pin_memory": true
104
+ },
105
+ "overlap_comm": false,
106
+ "contiguous_gradients": true,
107
+ "sub_group_size": 1000000000.0,
108
+ "reduce_bucket_size": "auto",
109
+ "zero_quantized_weights": false,
110
+ "zero_quantized_gradients": false,
111
+ "stage3_prefetch_bucket_size": "auto",
112
+ "stage3_param_persistence_threshold": "auto",
113
+ "stage3_max_live_parameters": 1000000000.0,
114
+ "stage3_max_reuse_distance": 1000000000.0,
115
+ "stage3_gather_16bit_weights_on_model_save": true
116
+ },
117
+ "gradient_accumulation_steps": "auto",
118
+ "gradient_clipping": "auto",
119
+ "steps_per_print": 2000,
120
+ "train_batch_size": "auto",
121
+ "train_micro_batch_size_per_gpu": "auto",
122
+ "wall_clock_breakdown": false
123
+ },
124
+ "label_smoothing_factor": 0.0,
125
+ "optim": "adamw_torch",
126
+ "optim_args": null,
127
+ "adafactor": false,
128
+ "group_by_length": false,
129
+ "length_column_name": "length",
130
+ "report_to": [
131
+ "tensorboard"
132
+ ],
133
+ "ddp_find_unused_parameters": null,
134
+ "ddp_bucket_cap_mb": null,
135
+ "ddp_broadcast_buffers": null,
136
+ "dataloader_pin_memory": true,
137
+ "dataloader_persistent_workers": false,
138
+ "skip_memory_metrics": true,
139
+ "use_legacy_prediction_loop": false,
140
+ "push_to_hub": false,
141
+ "resume_from_checkpoint": null,
142
+ "hub_model_id": null,
143
+ "hub_strategy": "every_save",
144
+ "hub_token": null,
145
+ "hub_private_repo": null,
146
+ "hub_always_push": false,
147
+ "hub_revision": null,
148
+ "gradient_checkpointing": true,
149
+ "gradient_checkpointing_kwargs": null,
150
+ "include_inputs_for_metrics": false,
151
+ "include_for_metrics": [],
152
+ "eval_do_concat_batches": true,
153
+ "fp16_backend": "auto",
154
+ "push_to_hub_model_id": null,
155
+ "push_to_hub_organization": null,
156
+ "push_to_hub_token": null,
157
+ "mp_parameters": "",
158
+ "auto_find_batch_size": false,
159
+ "full_determinism": false,
160
+ "torchdynamo": null,
161
+ "ray_scope": "last",
162
+ "ddp_timeout": 18000000,
163
+ "torch_compile": false,
164
+ "torch_compile_backend": null,
165
+ "torch_compile_mode": null,
166
+ "include_tokens_per_second": false,
167
+ "include_num_input_tokens_seen": false,
168
+ "neftune_noise_alpha": null,
169
+ "optim_target_modules": null,
170
+ "batch_eval_metrics": false,
171
+ "eval_on_start": false,
172
+ "use_liger_kernel": false,
173
+ "liger_kernel_config": null,
174
+ "eval_use_gather_object": false,
175
+ "average_tokens_across_devices": true,
176
+ "sortish_sampler": false,
177
+ "predict_with_generate": false,
178
+ "generation_max_length": null,
179
+ "generation_num_beams": null,
180
+ "generation_config": null,
181
+ "vit_gradient_checkpointing": null,
182
+ "check_model": true,
183
+ "acc_strategy": "token",
184
+ "train_dataloader_shuffle": true,
185
+ "max_epochs": null,
186
+ "aligner_lr": null,
187
+ "vit_lr": null,
188
+ "optimizer": null,
189
+ "use_logits_to_keep": null,
190
+ "channels": null,
191
+ "ds3_gather_for_generation": true,
192
+ "metric_warmup_step": 0,
193
+ "fsdp_num": 1,
194
+ "acc_steps": 1,
195
+ "eval_use_evalscope": false,
196
+ "eval_dataset": [],
197
+ "eval_dataset_args": null,
198
+ "eval_limit": null,
199
+ "eval_generation_config": null,
200
+ "model": "JSL-joysafety-v1/gpt-oss-20b",
201
+ "model_type": null,
202
+ "model_revision": null,
203
+ "task_type": "causal_lm",
204
+ "torch_dtype": "bfloat16",
205
+ "attn_impl": "flash_attn",
206
+ "num_labels": null,
207
+ "problem_type": null,
208
+ "rope_scaling": {
209
+ "beta_fast": 32.0,
210
+ "beta_slow": 1.0,
211
+ "factor": 32.0,
212
+ "original_max_position_embeddings": 4096,
213
+ "rope_type": "yarn",
214
+ "truncate": false,
215
+ "type": "yarn"
216
+ },
217
+ "device_map": null,
218
+ "max_memory": {},
219
+ "local_repo_path": null,
220
+ "init_strategy": null,
221
+ "template": "default",
222
+ "system": null,
223
+ "max_length": 8192,
224
+ "truncation_strategy": "right",
225
+ "max_pixels": null,
226
+ "agent_template": null,
227
+ "norm_bbox": null,
228
+ "use_chat_template": true,
229
+ "padding_free": false,
230
+ "padding_side": "right",
231
+ "loss_scale": "default",
232
+ "sequence_parallel_size": 1,
233
+ "response_prefix": null,
234
+ "template_backend": "swift",
235
+ "dataset": [
236
+ "JSL-joysafety-v1/safety-dataset"
237
+ ],
238
+ "val_dataset": [],
239
+ "split_dataset_ratio": 0.0,
240
+ "dataset_num_proc": 192,
241
+ "load_from_cache_file": true,
242
+ "dataset_shuffle": true,
243
+ "val_dataset_shuffle": false,
244
+ "streaming": false,
245
+ "interleave_prob": null,
246
+ "stopping_strategy": "first_exhausted",
247
+ "shuffle_buffer_size": 1000,
248
+ "download_mode": "reuse_dataset_if_exists",
249
+ "columns": {},
250
+ "strict": false,
251
+ "model_name": null,
252
+ "model_author": null,
253
+ "custom_dataset_info": [],
254
+ "quant_method": null,
255
+ "quant_bits": null,
256
+ "hqq_axis": null,
257
+ "bnb_4bit_compute_dtype": "bfloat16",
258
+ "bnb_4bit_quant_type": "nf4",
259
+ "bnb_4bit_use_double_quant": true,
260
+ "bnb_4bit_quant_storage": null,
261
+ "max_new_tokens": 64,
262
+ "temperature": 0.0,
263
+ "top_k": null,
264
+ "top_p": null,
265
+ "repetition_penalty": null,
266
+ "num_beams": 1,
267
+ "stream": false,
268
+ "stop_words": [],
269
+ "logprobs": false,
270
+ "top_logprobs": null,
271
+ "ckpt_dir": null,
272
+ "lora_modules": [],
273
+ "tuner_backend": "peft",
274
+ "train_type": "full",
275
+ "adapters": [],
276
+ "external_plugins": [],
277
+ "model_kwargs": {},
278
+ "load_args": false,
279
+ "load_data_args": false,
280
+ "packing": false,
281
+ "packing_cache": null,
282
+ "custom_register_path": [],
283
+ "use_hf": false,
284
+ "ignore_args_error": false,
285
+ "use_swift_lora": false,
286
+ "freeze_parameters": [],
287
+ "freeze_parameters_regex": null,
288
+ "freeze_parameters_ratio": 0.0,
289
+ "trainable_parameters": [],
290
+ "trainable_parameters_regex": null,
291
+ "freeze_llm": false,
292
+ "freeze_vit": true,
293
+ "freeze_aligner": true,
294
+ "target_modules": [
295
+ "all-linear"
296
+ ],
297
+ "target_regex": null,
298
+ "modules_to_save": [],
299
+ "lora_rank": 8,
300
+ "lora_alpha": 32,
301
+ "lora_dropout": 0.05,
302
+ "lora_bias": "none",
303
+ "lora_dtype": null,
304
+ "lorap_lr_ratio": null,
305
+ "use_rslora": false,
306
+ "use_dora": false,
307
+ "lora_ga_batch_size": 2,
308
+ "lora_ga_iters": 2,
309
+ "lora_ga_max_length": 1024,
310
+ "lora_ga_direction": "ArB2r",
311
+ "lora_ga_scale": "stable",
312
+ "lora_ga_stable_gamma": 16,
313
+ "init_weights": true,
314
+ "fourier_n_frequency": 2000,
315
+ "fourier_scaling": 300.0,
316
+ "boft_block_size": 4,
317
+ "boft_block_num": 0,
318
+ "boft_n_butterfly_factor": 1,
319
+ "boft_dropout": 0.0,
320
+ "vera_rank": 256,
321
+ "vera_projection_prng_key": 0,
322
+ "vera_dropout": 0.0,
323
+ "vera_d_initial": 0.1,
324
+ "adapter_act": "gelu",
325
+ "adapter_length": 128,
326
+ "use_galore": false,
327
+ "galore_target_modules": null,
328
+ "galore_rank": 128,
329
+ "galore_update_proj_gap": 50,
330
+ "galore_scale": 1.0,
331
+ "galore_proj_type": "std",
332
+ "galore_optim_per_parameter": false,
333
+ "galore_with_embedding": false,
334
+ "galore_quantization": false,
335
+ "galore_proj_quant": false,
336
+ "galore_proj_bits": 4,
337
+ "galore_proj_group_size": 256,
338
+ "galore_cos_threshold": 0.4,
339
+ "galore_gamma_proj": 2,
340
+ "galore_queue_size": 5,
341
+ "adalora_target_r": 8,
342
+ "adalora_init_r": 12,
343
+ "adalora_tinit": 0,
344
+ "adalora_tfinal": 0,
345
+ "adalora_deltaT": 1,
346
+ "adalora_beta1": 0.85,
347
+ "adalora_beta2": 0.85,
348
+ "adalora_orth_reg_weight": 0.5,
349
+ "llamapro_num_new_blocks": 4,
350
+ "llamapro_num_groups": null,
351
+ "lisa_activated_layers": 0,
352
+ "lisa_step_interval": 20,
353
+ "reft_layer_key": null,
354
+ "reft_layers": null,
355
+ "reft_rank": 4,
356
+ "reft_intervention_type": "LoreftIntervention",
357
+ "reft_args": null,
358
+ "swanlab_token": null,
359
+ "swanlab_project": null,
360
+ "swanlab_workspace": null,
361
+ "swanlab_exp_name": null,
362
+ "swanlab_lark_webhook_url": null,
363
+ "swanlab_lark_secret": null,
364
+ "swanlab_mode": "cloud",
365
+ "add_version": true,
366
+ "resume_only_model": false,
367
+ "create_checkpoint_symlink": false,
368
+ "lazy_tokenize": false,
369
+ "loss_type": null,
370
+ "metric": null,
371
+ "zero_hpz_partition_size": null,
372
+ "rank": 0,
373
+ "global_world_size": 40,
374
+ "local_world_size": 8,
375
+ "model_suffix": "gpt-oss-20b",
376
+ "model_meta": "ModelMeta(model_type=None, model_groups=[], template='dummy', get_function=<function get_model_tokenizer_from_local at 0x7f67a0a7b130>, model_arch=None, architectures=[], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=[], tags=[])",
377
+ "model_dir": "/mnt/workspace/public_model/gpt-oss-20b",
378
+ "evaluation_strategy": "steps"
379
+ }
chat_template.jinja ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{\n" }}
88
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
89
+ {{- prop_name -}}
90
+ {%- if prop_name not in (param_spec.required or []) -%}
91
+ {{- "?" }}
92
+ {%- endif -%}
93
+ {{- ": " }}
94
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
95
+ {%- if not loop.last -%}
96
+ {{-", " }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+ {{- "}" }}
100
+ {%- else -%}
101
+ {{- "object" }}
102
+ {%- endif -%}
103
+ {%- else -%}
104
+ {{- "any" }}
105
+ {%- endif -%}
106
+ {%- endmacro -%}
107
+
108
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
109
+ {{- "## " + namespace_name + "\n\n" }}
110
+ {{- "namespace " + namespace_name + " {\n\n" }}
111
+ {%- for tool in tools %}
112
+ {%- set tool = tool.function %}
113
+ {{- "// " + tool.description + "\n" }}
114
+ {{- "type "+ tool.name + " = " }}
115
+ {%- if tool.parameters and tool.parameters.properties %}
116
+ {{- "(_: {\n" }}
117
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
118
+ {%- if param_spec.description %}
119
+ {{- "// " + param_spec.description + "\n" }}
120
+ {%- endif %}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- ",\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {%- set model_identity = "\n\n你是一名「大模型内容安全审核专家」,请根据下面的风险审核checklist完成风险审核;\n\n#【任务描述】:\n\n 在 AI 对话场景中,完成用户输入与大模型回答安全审核,识别其中是否存在风险内容及诱导性风险。\n \n# 【注意事项】:\n 1. 按照《生成式人工智能服务管理暂行办法》进行风险审核; \n 2. 输出仅返回 JSON,不要附加任何解释性文字。 \n\n# 【风险审核-checklist】:\n\n 判断用户输入是否存在以下风险类型:涉政、暴恐、涉黄、涉赌、涉毒、辱骂、违禁、歧视、其他侵犯他人权益、其他商业违法违规等相关风险;无任何风险则归类为“正常文本”\n\n**输出格式**(JSON,禁止省略任何字段):\n\n```json\n{\n \"reason\":\"cot分析过程\",\n \"risk_level\": 无风险|低风险|中风险|高风险, \n \"hit_categories\": [\"****\",\"****:],\n \"hit_detaile_categories\":[\"****\",\"****\"]\n \"risk_tags\"[] \n \"risk_roler\":\"user|\"ai\"|\"user&ai\",\n \"hit_keywords\": [\"xxx\"], \n \"suggestion\": \"pass\"|\"mask\"|\"block\"|\"review\"|\"proxy_answer\"\n}\n```\n**输出格式声明**\n reason:存放推理过程;\n risk_level:存放风险级别,分成四档:无风险|低风险|中风险|高风险;\n hit_categories:存放识别到的一级风险类别标签;\n hit_detaile_categories:存放识别到的二级风险类别标签;\n risk_tags:详细风险类型;\n risk_roler:存放对话中触发风险角色,user代表用户输入有风险,user&ai代表用户输入大模型回复都有风险,ai代表大模型回复有风险;\n hit_keywords:触发风险的原文片段;\n suggestion:建议处置策略;\n" %}
199
+ {%- endif %}
200
+ {{- model_identity + "\n" }}
201
+ {{- "Knowledge cutoff: 2024-06\n" }}
202
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
203
+ {%- if reasoning_effort is not defined %}
204
+ {%- set reasoning_effort = "medium" %}
205
+ {%- endif %}
206
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
207
+ {%- if builtin_tools %}
208
+ {{- "# Tools\n\n" }}
209
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
210
+ {%- for tool in builtin_tools %}
211
+ {%- if tool == "browser" %}
212
+ {%- set available_builtin_tools.browser = true %}
213
+ {%- elif tool == "python" %}
214
+ {%- set available_builtin_tools.python = true %}
215
+ {%- endif %}
216
+ {%- endfor %}
217
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
218
+ {%- endif -%}
219
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
220
+ {%- if tools -%}
221
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
222
+ {%- endif -%}
223
+ {%- endmacro -%}
224
+
225
+ {#- Main Template Logic ================================================= #}
226
+ {#- Set defaults #}
227
+
228
+ {#- Render system message #}
229
+ {{- "<|start|>system<|message|>" }}
230
+ {{- build_system_message() }}
231
+ {{- "<|end|>" }}
232
+
233
+ {#- Extract developer message #}
234
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
235
+ {%- set developer_message = messages[0].content %}
236
+ {%- set loop_messages = messages[1:] %}
237
+ {%- else %}
238
+ {%- set developer_message = "" %}
239
+ {%- set loop_messages = messages %}
240
+ {%- endif %}
241
+
242
+ {#- Render developer message #}
243
+ {%- if developer_message or tools %}
244
+ {{- "<|start|>developer<|message|>" }}
245
+ {%- if developer_message %}
246
+ {{- "# Instructions\n\n" }}
247
+ {{- developer_message }}
248
+ {{- "\n\n" }}
249
+ {%- endif %}
250
+ {%- if tools -%}
251
+ {{- "# Tools\n\n" }}
252
+ {{- render_tool_namespace("functions", tools) }}
253
+ {%- endif -%}
254
+ {{- "<|end|>" }}
255
+ {%- endif %}
256
+
257
+ {#- Render messages #}
258
+ {%- set last_tool_call = namespace(name=none) %}
259
+ {%- for message in loop_messages -%}
260
+ {#- At this point only assistant/user/tool messages should remain #}
261
+ {%- if message.role == 'assistant' -%}
262
+ {#- Checks to ensure the messages are being passed in the format we expect #}
263
+ {%- if "content" in message %}
264
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
265
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
266
+ {%- endif %}
267
+ {%- endif %}
268
+ {%- if "thinking" in message %}
269
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
270
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
271
+ {%- endif %}
272
+ {%- endif %}
273
+ {%- if "tool_calls" in message %}
274
+ {#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
275
+ {#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
276
+ {#- when we render CoT/analysis messages in inference. #}
277
+ {%- set future_final_message = namespace(found=false) %}
278
+ {%- for future_message in loop_messages[loop.index:] %}
279
+ {%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
280
+ {%- set future_final_message.found = true %}
281
+ {%- endif %}
282
+ {%- endfor %}
283
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
284
+ {#- in "tool" messages from the most recent assistant tool call name #}
285
+ {%- set tool_call = message.tool_calls[0] %}
286
+ {%- if tool_call.function %}
287
+ {%- set tool_call = tool_call.function %}
288
+ {%- endif %}
289
+ {%- if message.content and message.thinking %}
290
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
291
+ {%- elif message.content and not future_final_message.found %}
292
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
293
+ {%- elif message.thinking and not future_final_message.found %}
294
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
295
+ {%- endif %}
296
+ {{- "<|start|>assistant to=" }}
297
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
298
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
299
+ {{- tool_call.arguments|tojson }}
300
+ {{- "<|call|>" }}
301
+ {%- set last_tool_call.name = tool_call.name %}
302
+ {%- elif loop.last and not add_generation_prompt %}
303
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
304
+ {#- This is a situation that should only occur in training, never in inference. #}
305
+ {%- if "thinking" in message %}
306
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
307
+ {%- endif %}
308
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
309
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
310
+ {#- when training, so the model learns to emit it. #}
311
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
312
+ {%- else %}
313
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
314
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
315
+ {%- set last_tool_call.name = none %}
316
+ {%- endif %}
317
+ {%- elif message.role == 'tool' -%}
318
+ {%- if last_tool_call.name is none %}
319
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
320
+ {%- endif %}
321
+ {{- "<|start|>functions." + last_tool_call.name }}
322
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
323
+ {%- elif message.role == 'user' -%}
324
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
325
+ {%- endif -%}
326
+ {%- endfor -%}
327
+
328
+ {#- Generation prompt #}
329
+ {%- if add_generation_prompt -%}
330
+ <|start|>assistant
331
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GptOssForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 200002,
8
+ "experts_per_token": 4,
9
+ "head_dim": 64,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2880,
12
+ "initial_context_length": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 2880,
15
+ "keys_to_ignore_at_inference": [
16
+ "past_key_values"
17
+ ],
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "full_attention",
21
+ "sliding_attention",
22
+ "full_attention",
23
+ "sliding_attention",
24
+ "full_attention",
25
+ "sliding_attention",
26
+ "full_attention",
27
+ "sliding_attention",
28
+ "full_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "full_attention",
33
+ "sliding_attention",
34
+ "full_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "full_attention",
39
+ "sliding_attention",
40
+ "full_attention",
41
+ "sliding_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 131072,
45
+ "model_type": "gpt_oss",
46
+ "num_attention_heads": 64,
47
+ "num_experts_per_tok": 4,
48
+ "num_hidden_layers": 24,
49
+ "num_key_value_heads": 8,
50
+ "num_local_experts": 32,
51
+ "output_router_logits": false,
52
+ "pad_token_id": 199999,
53
+ "rms_norm_eps": 1e-05,
54
+ "rope_scaling": {
55
+ "beta_fast": 32.0,
56
+ "beta_slow": 1.0,
57
+ "factor": 32.0,
58
+ "original_max_position_embeddings": 4096,
59
+ "rope_type": "yarn",
60
+ "truncate": false,
61
+ "type": "yarn"
62
+ },
63
+ "rope_theta": 150000,
64
+ "router_aux_loss_coef": 0.9,
65
+ "sliding_window": 128,
66
+ "swiglu_limit": 7.0,
67
+ "tie_word_embeddings": false,
68
+ "torch_dtype": "bfloat16",
69
+ "transformers_version": "4.55.0",
70
+ "use_cache": false,
71
+ "vocab_size": 201088
72
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 199998,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 200002,
6
+ 199999,
7
+ 200012
8
+ ],
9
+ "pad_token_id": 199999,
10
+ "transformers_version": "4.55.0"
11
+ }
model-00001-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f08c59c38b2fa93484c5bb6a1138e42b02c0b6b8180c9eba84891145626fae
3
+ size 4504304664
model-00002-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a076be34a28432f3addaf17d8d59050bc1570355220128ea9db099fb7bdf328
3
+ size 4939127656
model-00003-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30612274cf8509bd0dee0dfd5d3bdce9a9390654dff92cda0899065b2d20537d
3
+ size 4939127656
model-00004-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ae42d901748571cc4d7c19c04a3b2090e0bd5294a78dc673d01baa27e9c41a0
3
+ size 4939127680
model-00005-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009c996fb55d035f2a7e68854b5ff6bf419976213399bf024a5bca01acf21e36
3
+ size 4939127704
model-00006-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de0e64803cd1551ed8339dcd9d831d663f0889875afc2357db4a006c7ae2f333
3
+ size 4939127704
model-00007-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c039f20d8b07e407d778cf0005cbb8beac1e46fdb5fe5701b0fde1f784f54ee
3
+ size 4939127704
model-00008-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98fce548fbfb2d09f2c9a91439b53f6e0b693cf94a35934714faf596bf6dca02
3
+ size 4939127704
model-00009-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67e3c5e2d98072f8d3a066842d22a822a5cae91fab5ee61e1d1ca89603e6e27f
3
+ size 2751362856
model.safetensors.index.json ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 335424,
4
+ "total_size": 41829514368
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00009-of-00009.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00009.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
10
+ "model.layers.0.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
11
+ "model.layers.0.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
12
+ "model.layers.0.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
13
+ "model.layers.0.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
14
+ "model.layers.0.mlp.router.bias": "model-00001-of-00009.safetensors",
15
+ "model.layers.0.mlp.router.weight": "model-00001-of-00009.safetensors",
16
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
17
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
18
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
19
+ "model.layers.0.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
20
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
21
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
22
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
23
+ "model.layers.0.self_attn.sinks": "model-00001-of-00009.safetensors",
24
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
25
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
26
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
27
+ "model.layers.1.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
28
+ "model.layers.1.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
29
+ "model.layers.1.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
30
+ "model.layers.1.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
31
+ "model.layers.1.mlp.router.bias": "model-00001-of-00009.safetensors",
32
+ "model.layers.1.mlp.router.weight": "model-00001-of-00009.safetensors",
33
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
34
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
35
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
36
+ "model.layers.1.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
37
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
38
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
39
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
40
+ "model.layers.1.self_attn.sinks": "model-00001-of-00009.safetensors",
41
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
42
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
43
+ "model.layers.10.input_layernorm.weight": "model-00004-of-00009.safetensors",
44
+ "model.layers.10.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
45
+ "model.layers.10.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
46
+ "model.layers.10.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
47
+ "model.layers.10.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
48
+ "model.layers.10.mlp.router.bias": "model-00004-of-00009.safetensors",
49
+ "model.layers.10.mlp.router.weight": "model-00004-of-00009.safetensors",
50
+ "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
51
+ "model.layers.10.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
52
+ "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
53
+ "model.layers.10.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
54
+ "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
55
+ "model.layers.10.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
56
+ "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
57
+ "model.layers.10.self_attn.sinks": "model-00004-of-00009.safetensors",
58
+ "model.layers.10.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
59
+ "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
60
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00009.safetensors",
61
+ "model.layers.11.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
62
+ "model.layers.11.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
63
+ "model.layers.11.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
64
+ "model.layers.11.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
65
+ "model.layers.11.mlp.router.bias": "model-00004-of-00009.safetensors",
66
+ "model.layers.11.mlp.router.weight": "model-00004-of-00009.safetensors",
67
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
68
+ "model.layers.11.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
69
+ "model.layers.11.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
70
+ "model.layers.11.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
71
+ "model.layers.11.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
72
+ "model.layers.11.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
73
+ "model.layers.11.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
74
+ "model.layers.11.self_attn.sinks": "model-00004-of-00009.safetensors",
75
+ "model.layers.11.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
76
+ "model.layers.11.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
77
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00009.safetensors",
78
+ "model.layers.12.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
79
+ "model.layers.12.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
80
+ "model.layers.12.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
81
+ "model.layers.12.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
82
+ "model.layers.12.mlp.router.bias": "model-00005-of-00009.safetensors",
83
+ "model.layers.12.mlp.router.weight": "model-00005-of-00009.safetensors",
84
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
85
+ "model.layers.12.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
86
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
87
+ "model.layers.12.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
88
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
89
+ "model.layers.12.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
90
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
91
+ "model.layers.12.self_attn.sinks": "model-00005-of-00009.safetensors",
92
+ "model.layers.12.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
93
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
94
+ "model.layers.13.input_layernorm.weight": "model-00005-of-00009.safetensors",
95
+ "model.layers.13.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
96
+ "model.layers.13.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
97
+ "model.layers.13.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
98
+ "model.layers.13.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
99
+ "model.layers.13.mlp.router.bias": "model-00005-of-00009.safetensors",
100
+ "model.layers.13.mlp.router.weight": "model-00005-of-00009.safetensors",
101
+ "model.layers.13.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
102
+ "model.layers.13.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
103
+ "model.layers.13.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
104
+ "model.layers.13.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
105
+ "model.layers.13.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
106
+ "model.layers.13.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
107
+ "model.layers.13.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
108
+ "model.layers.13.self_attn.sinks": "model-00005-of-00009.safetensors",
109
+ "model.layers.13.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
110
+ "model.layers.13.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
111
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00009.safetensors",
112
+ "model.layers.14.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
113
+ "model.layers.14.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
114
+ "model.layers.14.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
115
+ "model.layers.14.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
116
+ "model.layers.14.mlp.router.bias": "model-00005-of-00009.safetensors",
117
+ "model.layers.14.mlp.router.weight": "model-00005-of-00009.safetensors",
118
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
119
+ "model.layers.14.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
120
+ "model.layers.14.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
121
+ "model.layers.14.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
122
+ "model.layers.14.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
123
+ "model.layers.14.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
124
+ "model.layers.14.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
125
+ "model.layers.14.self_attn.sinks": "model-00005-of-00009.safetensors",
126
+ "model.layers.14.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
127
+ "model.layers.14.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
128
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00009.safetensors",
129
+ "model.layers.15.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
130
+ "model.layers.15.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
131
+ "model.layers.15.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
132
+ "model.layers.15.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
133
+ "model.layers.15.mlp.router.bias": "model-00006-of-00009.safetensors",
134
+ "model.layers.15.mlp.router.weight": "model-00006-of-00009.safetensors",
135
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
136
+ "model.layers.15.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
137
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
138
+ "model.layers.15.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
139
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
140
+ "model.layers.15.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
141
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
142
+ "model.layers.15.self_attn.sinks": "model-00006-of-00009.safetensors",
143
+ "model.layers.15.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
144
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
145
+ "model.layers.16.input_layernorm.weight": "model-00006-of-00009.safetensors",
146
+ "model.layers.16.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
147
+ "model.layers.16.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
148
+ "model.layers.16.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
149
+ "model.layers.16.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
150
+ "model.layers.16.mlp.router.bias": "model-00006-of-00009.safetensors",
151
+ "model.layers.16.mlp.router.weight": "model-00006-of-00009.safetensors",
152
+ "model.layers.16.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
153
+ "model.layers.16.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
154
+ "model.layers.16.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
155
+ "model.layers.16.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
156
+ "model.layers.16.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
157
+ "model.layers.16.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
158
+ "model.layers.16.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
159
+ "model.layers.16.self_attn.sinks": "model-00006-of-00009.safetensors",
160
+ "model.layers.16.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
161
+ "model.layers.16.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
162
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00009.safetensors",
163
+ "model.layers.17.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
164
+ "model.layers.17.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
165
+ "model.layers.17.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
166
+ "model.layers.17.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
167
+ "model.layers.17.mlp.router.bias": "model-00006-of-00009.safetensors",
168
+ "model.layers.17.mlp.router.weight": "model-00006-of-00009.safetensors",
169
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
170
+ "model.layers.17.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
171
+ "model.layers.17.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
172
+ "model.layers.17.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
173
+ "model.layers.17.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
174
+ "model.layers.17.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
175
+ "model.layers.17.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
176
+ "model.layers.17.self_attn.sinks": "model-00006-of-00009.safetensors",
177
+ "model.layers.17.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
178
+ "model.layers.17.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
179
+ "model.layers.18.input_layernorm.weight": "model-00007-of-00009.safetensors",
180
+ "model.layers.18.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
181
+ "model.layers.18.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
182
+ "model.layers.18.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
183
+ "model.layers.18.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
184
+ "model.layers.18.mlp.router.bias": "model-00007-of-00009.safetensors",
185
+ "model.layers.18.mlp.router.weight": "model-00007-of-00009.safetensors",
186
+ "model.layers.18.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
187
+ "model.layers.18.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
188
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
189
+ "model.layers.18.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
190
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
191
+ "model.layers.18.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
192
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
193
+ "model.layers.18.self_attn.sinks": "model-00007-of-00009.safetensors",
194
+ "model.layers.18.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
195
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
196
+ "model.layers.19.input_layernorm.weight": "model-00007-of-00009.safetensors",
197
+ "model.layers.19.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
198
+ "model.layers.19.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
199
+ "model.layers.19.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
200
+ "model.layers.19.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
201
+ "model.layers.19.mlp.router.bias": "model-00007-of-00009.safetensors",
202
+ "model.layers.19.mlp.router.weight": "model-00007-of-00009.safetensors",
203
+ "model.layers.19.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
204
+ "model.layers.19.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
205
+ "model.layers.19.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
206
+ "model.layers.19.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
207
+ "model.layers.19.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
208
+ "model.layers.19.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
209
+ "model.layers.19.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
210
+ "model.layers.19.self_attn.sinks": "model-00007-of-00009.safetensors",
211
+ "model.layers.19.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
212
+ "model.layers.19.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
213
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00009.safetensors",
214
+ "model.layers.2.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
215
+ "model.layers.2.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
216
+ "model.layers.2.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
217
+ "model.layers.2.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
218
+ "model.layers.2.mlp.router.bias": "model-00001-of-00009.safetensors",
219
+ "model.layers.2.mlp.router.weight": "model-00001-of-00009.safetensors",
220
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
221
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
222
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
223
+ "model.layers.2.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
224
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
225
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
226
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
227
+ "model.layers.2.self_attn.sinks": "model-00001-of-00009.safetensors",
228
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
229
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
230
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00009.safetensors",
231
+ "model.layers.20.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
232
+ "model.layers.20.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
233
+ "model.layers.20.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
234
+ "model.layers.20.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
235
+ "model.layers.20.mlp.router.bias": "model-00007-of-00009.safetensors",
236
+ "model.layers.20.mlp.router.weight": "model-00007-of-00009.safetensors",
237
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
238
+ "model.layers.20.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
239
+ "model.layers.20.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
240
+ "model.layers.20.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
241
+ "model.layers.20.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
242
+ "model.layers.20.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
243
+ "model.layers.20.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
244
+ "model.layers.20.self_attn.sinks": "model-00007-of-00009.safetensors",
245
+ "model.layers.20.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
246
+ "model.layers.20.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
247
+ "model.layers.21.input_layernorm.weight": "model-00008-of-00009.safetensors",
248
+ "model.layers.21.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
249
+ "model.layers.21.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
250
+ "model.layers.21.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
251
+ "model.layers.21.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
252
+ "model.layers.21.mlp.router.bias": "model-00008-of-00009.safetensors",
253
+ "model.layers.21.mlp.router.weight": "model-00008-of-00009.safetensors",
254
+ "model.layers.21.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
255
+ "model.layers.21.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
256
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
257
+ "model.layers.21.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
258
+ "model.layers.21.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
259
+ "model.layers.21.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
260
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
261
+ "model.layers.21.self_attn.sinks": "model-00008-of-00009.safetensors",
262
+ "model.layers.21.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
263
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
264
+ "model.layers.22.input_layernorm.weight": "model-00008-of-00009.safetensors",
265
+ "model.layers.22.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
266
+ "model.layers.22.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
267
+ "model.layers.22.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
268
+ "model.layers.22.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
269
+ "model.layers.22.mlp.router.bias": "model-00008-of-00009.safetensors",
270
+ "model.layers.22.mlp.router.weight": "model-00008-of-00009.safetensors",
271
+ "model.layers.22.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
272
+ "model.layers.22.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
273
+ "model.layers.22.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
274
+ "model.layers.22.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
275
+ "model.layers.22.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
276
+ "model.layers.22.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
277
+ "model.layers.22.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
278
+ "model.layers.22.self_attn.sinks": "model-00008-of-00009.safetensors",
279
+ "model.layers.22.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
280
+ "model.layers.22.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
281
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00009.safetensors",
282
+ "model.layers.23.mlp.experts.down_proj": "model-00009-of-00009.safetensors",
283
+ "model.layers.23.mlp.experts.down_proj_bias": "model-00009-of-00009.safetensors",
284
+ "model.layers.23.mlp.experts.gate_up_proj": "model-00009-of-00009.safetensors",
285
+ "model.layers.23.mlp.experts.gate_up_proj_bias": "model-00009-of-00009.safetensors",
286
+ "model.layers.23.mlp.router.bias": "model-00008-of-00009.safetensors",
287
+ "model.layers.23.mlp.router.weight": "model-00008-of-00009.safetensors",
288
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
289
+ "model.layers.23.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
290
+ "model.layers.23.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
291
+ "model.layers.23.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
292
+ "model.layers.23.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
293
+ "model.layers.23.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
294
+ "model.layers.23.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
295
+ "model.layers.23.self_attn.sinks": "model-00008-of-00009.safetensors",
296
+ "model.layers.23.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
297
+ "model.layers.23.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
298
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00009.safetensors",
299
+ "model.layers.3.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
300
+ "model.layers.3.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
301
+ "model.layers.3.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
302
+ "model.layers.3.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
303
+ "model.layers.3.mlp.router.bias": "model-00002-of-00009.safetensors",
304
+ "model.layers.3.mlp.router.weight": "model-00002-of-00009.safetensors",
305
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
306
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
307
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
308
+ "model.layers.3.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
309
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
310
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
311
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
312
+ "model.layers.3.self_attn.sinks": "model-00002-of-00009.safetensors",
313
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
314
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
315
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00009.safetensors",
316
+ "model.layers.4.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
317
+ "model.layers.4.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
318
+ "model.layers.4.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
319
+ "model.layers.4.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
320
+ "model.layers.4.mlp.router.bias": "model-00002-of-00009.safetensors",
321
+ "model.layers.4.mlp.router.weight": "model-00002-of-00009.safetensors",
322
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
323
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
324
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
325
+ "model.layers.4.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
326
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
327
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
328
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
329
+ "model.layers.4.self_attn.sinks": "model-00002-of-00009.safetensors",
330
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
331
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
332
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00009.safetensors",
333
+ "model.layers.5.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
334
+ "model.layers.5.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
335
+ "model.layers.5.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
336
+ "model.layers.5.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
337
+ "model.layers.5.mlp.router.bias": "model-00002-of-00009.safetensors",
338
+ "model.layers.5.mlp.router.weight": "model-00002-of-00009.safetensors",
339
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
340
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
341
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
342
+ "model.layers.5.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
343
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
344
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
345
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
346
+ "model.layers.5.self_attn.sinks": "model-00002-of-00009.safetensors",
347
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
348
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
349
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00009.safetensors",
350
+ "model.layers.6.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
351
+ "model.layers.6.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
352
+ "model.layers.6.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
353
+ "model.layers.6.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
354
+ "model.layers.6.mlp.router.bias": "model-00003-of-00009.safetensors",
355
+ "model.layers.6.mlp.router.weight": "model-00003-of-00009.safetensors",
356
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
357
+ "model.layers.6.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
358
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
359
+ "model.layers.6.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
360
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
361
+ "model.layers.6.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
362
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
363
+ "model.layers.6.self_attn.sinks": "model-00003-of-00009.safetensors",
364
+ "model.layers.6.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
365
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
366
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00009.safetensors",
367
+ "model.layers.7.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
368
+ "model.layers.7.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
369
+ "model.layers.7.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
370
+ "model.layers.7.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
371
+ "model.layers.7.mlp.router.bias": "model-00003-of-00009.safetensors",
372
+ "model.layers.7.mlp.router.weight": "model-00003-of-00009.safetensors",
373
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
374
+ "model.layers.7.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
375
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
376
+ "model.layers.7.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
377
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
378
+ "model.layers.7.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
379
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
380
+ "model.layers.7.self_attn.sinks": "model-00003-of-00009.safetensors",
381
+ "model.layers.7.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
382
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
383
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00009.safetensors",
384
+ "model.layers.8.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
385
+ "model.layers.8.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
386
+ "model.layers.8.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
387
+ "model.layers.8.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
388
+ "model.layers.8.mlp.router.bias": "model-00003-of-00009.safetensors",
389
+ "model.layers.8.mlp.router.weight": "model-00003-of-00009.safetensors",
390
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
391
+ "model.layers.8.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
392
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
393
+ "model.layers.8.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
394
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
395
+ "model.layers.8.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
396
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
397
+ "model.layers.8.self_attn.sinks": "model-00003-of-00009.safetensors",
398
+ "model.layers.8.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
399
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
400
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00009.safetensors",
401
+ "model.layers.9.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
402
+ "model.layers.9.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
403
+ "model.layers.9.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
404
+ "model.layers.9.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
405
+ "model.layers.9.mlp.router.bias": "model-00004-of-00009.safetensors",
406
+ "model.layers.9.mlp.router.weight": "model-00004-of-00009.safetensors",
407
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
408
+ "model.layers.9.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
409
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
410
+ "model.layers.9.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
411
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
412
+ "model.layers.9.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
413
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
414
+ "model.layers.9.self_attn.sinks": "model-00004-of-00009.safetensors",
415
+ "model.layers.9.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
416
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
417
+ "model.norm.weight": "model-00009-of-00009.safetensors"
418
+ }
419
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
tokenizer_config.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "tokenizer_class": "PreTrainedTokenizerFast"
183
+ }