Higher loss than jekunz/smollm-135m-cpt-fineweb-faroese, may or may not be a bit better --> More unstable in the beginning, slightly lower loss in the end.

Training:

  • 1 Epoch
  • Learning rate: 8e-4
  • LR scheduler: Cosine
  • Warmup ratio: 0.05
  • Batch size: 1
  • 4 A100 (40GB) GPUs
  • Gradient accumulation steps: 64
  • Effective batch size: 256
  • Max. context length: 8192 tokens

(renamed from smollm-135m-full-fineweb-fao-test2)

Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for jekunz/smollm-135m-cpt-fineweb-faroese-2

Finetuned
(65)
this model

Dataset used to train jekunz/smollm-135m-cpt-fineweb-faroese-2

Collection including jekunz/smollm-135m-cpt-fineweb-faroese-2