sagittal-b0-finetuned-segments

This model is a fine-tuned version of nvidia/mit-b0 on the jenniferlumeng/Sagittal dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0561
  • Mean Iou: 0.3928
  • Mean Accuracy: 0.5550
  • Overall Accuracy: 0.6001
  • Accuracy Background: nan
  • Accuracy Olfactory bulb: 0.7548
  • Accuracy Anterior olfactory nucleus: 0.2361
  • Accuracy Basal ganglia: 0.5670
  • Accuracy Cortex: 0.8443
  • Accuracy Hypothalamus: 0.3500
  • Accuracy Thalamus: 0.3216
  • Accuracy Hippocampus: 0.4568
  • Accuracy Midbrain: 0.7339
  • Accuracy Cerebellum: 0.8112
  • Accuracy Pons and medulla: 0.4748
  • Iou Background: 0.0
  • Iou Olfactory bulb: 0.5861
  • Iou Anterior olfactory nucleus: 0.2110
  • Iou Basal ganglia: 0.4574
  • Iou Cortex: 0.6560
  • Iou Hypothalamus: 0.3196
  • Iou Thalamus: 0.3020
  • Iou Hippocampus: 0.4364
  • Iou Midbrain: 0.2970
  • Iou Cerebellum: 0.6248
  • Iou Pons and medulla: 0.4303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Olfactory bulb Accuracy Anterior olfactory nucleus Accuracy Basal ganglia Accuracy Cortex Accuracy Hypothalamus Accuracy Thalamus Accuracy Hippocampus Accuracy Midbrain Accuracy Cerebellum Accuracy Pons and medulla Iou Background Iou Olfactory bulb Iou Anterior olfactory nucleus Iou Basal ganglia Iou Cortex Iou Hypothalamus Iou Thalamus Iou Hippocampus Iou Midbrain Iou Cerebellum Iou Pons and medulla
1.9251 3.3333 20 2.3067 0.0795 0.1796 0.2634 nan 0.2399 0.0 0.0 0.9926 0.0554 0.0 0.0957 0.0 0.3004 0.1122 0.0 0.1546 0.0 0.0 0.2430 0.0548 0.0 0.0692 0.0 0.2769 0.0760
1.5773 6.6667 40 1.8563 0.1695 0.2863 0.3584 nan 0.4130 0.0 0.0340 0.8260 0.2004 0.1704 0.1409 0.4293 0.4427 0.2064 0.0 0.2795 0.0 0.0326 0.5150 0.1849 0.1148 0.1249 0.1197 0.3308 0.1619
1.3176 10.0 60 1.6904 0.2571 0.4066 0.4408 nan 0.6887 0.0 0.8044 0.7641 0.2494 0.1046 0.3613 0.2678 0.5775 0.2483 0.0 0.4874 0.0 0.1599 0.6414 0.2309 0.0979 0.3281 0.2014 0.4568 0.2239
1.3147 13.3333 80 1.4640 0.2817 0.4272 0.4773 nan 0.5533 0.0 0.4670 0.7442 0.2610 0.0613 0.4597 0.6721 0.6021 0.4509 0.0 0.3820 0.0 0.3403 0.6051 0.2377 0.0604 0.4191 0.2155 0.4920 0.3467
1.1284 16.6667 100 1.3582 0.2754 0.4165 0.4699 nan 0.6502 0.0036 0.5064 0.8678 0.2266 0.1352 0.4677 0.2578 0.5931 0.4562 0.0 0.5197 0.0036 0.3552 0.3330 0.2138 0.1324 0.4201 0.2191 0.4907 0.3414
1.1223 20.0 120 1.2891 0.2862 0.4221 0.4689 nan 0.6084 0.1211 0.3576 0.8239 0.2694 0.1435 0.4589 0.4033 0.5980 0.4369 0.0 0.4424 0.1137 0.3147 0.3247 0.2529 0.1306 0.4291 0.3035 0.4722 0.3644
1.0746 23.3333 140 1.2653 0.3122 0.4564 0.5064 nan 0.5209 0.0778 0.5140 0.7894 0.3297 0.1814 0.4610 0.7193 0.5320 0.4385 0.0 0.4051 0.0749 0.4002 0.5456 0.2988 0.1715 0.4247 0.2543 0.4697 0.3895
1.1374 26.6667 160 1.2168 0.3412 0.5006 0.5445 nan 0.7152 0.1454 0.5457 0.8318 0.3455 0.2429 0.4675 0.6257 0.6441 0.4424 0.0 0.5520 0.1348 0.3895 0.5159 0.3081 0.2310 0.4254 0.2683 0.5242 0.4046
0.8899 30.0 180 1.1327 0.3517 0.4974 0.5497 nan 0.5466 0.1382 0.4970 0.7591 0.3350 0.2808 0.4335 0.7737 0.7053 0.5047 0.0 0.4196 0.1286 0.4157 0.6405 0.3087 0.2560 0.4186 0.2777 0.5777 0.4251
0.822 33.3333 200 1.1223 0.3765 0.5371 0.5878 nan 0.7811 0.1923 0.5470 0.8318 0.3197 0.2845 0.4424 0.7182 0.6918 0.5623 0.0 0.5922 0.1736 0.4012 0.6352 0.3021 0.2676 0.4264 0.2960 0.5843 0.4632
1.3568 36.6667 220 1.0941 0.4136 0.5818 0.6319 nan 0.8136 0.2270 0.5548 0.8444 0.3559 0.7737 0.4477 0.4848 0.7838 0.5318 0.0 0.6210 0.2027 0.4504 0.6852 0.3245 0.4370 0.4324 0.2808 0.6397 0.4756
0.9664 40.0 240 1.0685 0.3843 0.5490 0.5962 nan 0.6310 0.2199 0.5723 0.8041 0.3211 0.8415 0.4591 0.3971 0.7908 0.4532 0.0 0.4706 0.1978 0.4563 0.6778 0.3002 0.4135 0.4364 0.2563 0.6112 0.4073
0.824 43.3333 260 1.0399 0.3955 0.5580 0.6051 nan 0.7486 0.2461 0.5592 0.8658 0.3265 0.5614 0.4605 0.5438 0.8004 0.4678 0.0 0.5838 0.2191 0.4581 0.6516 0.3069 0.3773 0.4371 0.2778 0.6095 0.4297
1.126 46.6667 280 1.0414 0.4036 0.5741 0.6232 nan 0.7521 0.2361 0.5644 0.8473 0.3231 0.8344 0.4528 0.4500 0.8079 0.4731 0.0 0.5863 0.2112 0.4592 0.6156 0.3047 0.4545 0.4341 0.3238 0.6222 0.4280
0.8935 50.0 300 1.0561 0.3928 0.5550 0.6001 nan 0.7548 0.2361 0.5670 0.8443 0.3500 0.3216 0.4568 0.7339 0.8112 0.4748 0.0 0.5861 0.2110 0.4574 0.6560 0.3196 0.3020 0.4364 0.2970 0.6248 0.4303

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.16.1
  • Tokenizers 0.21.1
Downloads last month
33
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jenniferlumeng/sagittal-b0-finetuned-segments

Base model

nvidia/mit-b0
Finetuned
(450)
this model