sagittal-b4-finetuned-segments

This model is a fine-tuned version of nvidia/mit-b4 on the jenniferlumeng/Sagittal dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5610
  • Mean Iou: 0.6387
  • Mean Accuracy: 0.7597
  • Overall Accuracy: 0.7684
  • Accuracy Background: nan
  • Accuracy Olfactory bulb: 0.7170
  • Accuracy Anterior olfactory nucleus: 0.6456
  • Accuracy Basal ganglia: 0.7788
  • Accuracy Cortex: 0.7965
  • Accuracy Hypothalamus: 0.6187
  • Accuracy Thalamus: 0.7553
  • Accuracy Hippocampus: 0.8524
  • Accuracy Midbrain: 0.8602
  • Accuracy Cerebellum: 0.7899
  • Accuracy Pons and medulla: 0.7831
  • Iou Background: 0.0
  • Iou Olfactory bulb: 0.6979
  • Iou Anterior olfactory nucleus: 0.5897
  • Iou Basal ganglia: 0.7036
  • Iou Cortex: 0.7569
  • Iou Hypothalamus: 0.5348
  • Iou Thalamus: 0.7058
  • Iou Hippocampus: 0.8192
  • Iou Midbrain: 0.7187
  • Iou Cerebellum: 0.7689
  • Iou Pons and medulla: 0.7295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Olfactory bulb Accuracy Anterior olfactory nucleus Accuracy Basal ganglia Accuracy Cortex Accuracy Hypothalamus Accuracy Thalamus Accuracy Hippocampus Accuracy Midbrain Accuracy Cerebellum Accuracy Pons and medulla Iou Background Iou Olfactory bulb Iou Anterior olfactory nucleus Iou Basal ganglia Iou Cortex Iou Hypothalamus Iou Thalamus Iou Hippocampus Iou Midbrain Iou Cerebellum Iou Pons and medulla
1.1622 3.3333 20 1.5275 0.2290 0.2936 0.3032 nan 0.3546 0.0661 0.3629 0.4619 0.3534 0.0245 0.4997 0.3121 0.3472 0.1532 0.0 0.3179 0.0654 0.2793 0.3896 0.3249 0.0232 0.4386 0.1852 0.3458 0.1488
0.8211 6.6667 40 1.0160 0.3284 0.4622 0.4886 nan 0.4025 0.2457 0.4573 0.7211 0.3213 0.7259 0.5201 0.4266 0.3944 0.4069 0.0 0.3734 0.2422 0.3826 0.4803 0.2946 0.2820 0.4623 0.3025 0.3941 0.3986
0.2823 10.0 60 0.9503 0.4263 0.5468 0.5681 nan 0.4108 0.3905 0.5659 0.6721 0.4120 0.7734 0.5256 0.6114 0.6022 0.5039 0.0 0.4030 0.3792 0.4867 0.6002 0.3712 0.5518 0.4860 0.4593 0.4789 0.4733
0.4346 13.3333 80 0.6683 0.5384 0.6798 0.7221 nan 0.5424 0.5376 0.7562 0.8557 0.5587 0.8000 0.5245 0.7792 0.7022 0.7419 0.0 0.5198 0.5055 0.6668 0.7488 0.4901 0.6675 0.4835 0.5702 0.6572 0.6131
0.1348 16.6667 100 0.5909 0.5275 0.6836 0.7131 nan 0.5024 0.5379 0.6884 0.7820 0.6158 0.8733 0.5253 0.7972 0.8618 0.6525 0.0 0.4253 0.5029 0.5920 0.7553 0.5203 0.5693 0.4756 0.5773 0.7332 0.6511
0.1317 20.0 120 0.5279 0.6000 0.7499 0.7699 nan 0.6679 0.6691 0.6804 0.9212 0.6790 0.7882 0.7477 0.8093 0.8195 0.7169 0.0 0.6282 0.6283 0.6090 0.7796 0.6010 0.5967 0.6350 0.6556 0.7736 0.6933
0.2667 23.3333 140 0.6451 0.5482 0.6840 0.6961 nan 0.6738 0.5915 0.6175 0.7717 0.6215 0.7162 0.7077 0.7127 0.7174 0.7097 0.0 0.6220 0.5489 0.5643 0.7119 0.5204 0.5866 0.6468 0.5720 0.6582 0.5986
0.3673 26.6667 160 0.5395 0.5843 0.7265 0.7280 nan 0.7682 0.6859 0.6984 0.8040 0.6214 0.7752 0.8302 0.7929 0.5215 0.7669 0.0 0.7397 0.6224 0.6607 0.6138 0.5355 0.6739 0.6855 0.6733 0.5017 0.7208
0.345 30.0 180 0.4865 0.6101 0.7534 0.7675 nan 0.7244 0.7111 0.7634 0.9073 0.7027 0.7449 0.7589 0.8557 0.6596 0.7061 0.0 0.7089 0.6334 0.6898 0.6957 0.5837 0.6786 0.6832 0.7091 0.6404 0.6886
0.1892 33.3333 200 0.5088 0.6134 0.7589 0.7739 nan 0.6971 0.6785 0.7077 0.8255 0.6950 0.7285 0.8019 0.7823 0.8302 0.8419 0.0 0.6760 0.6139 0.6244 0.7471 0.5948 0.6243 0.7012 0.6364 0.7359 0.7934
0.283 36.6667 220 0.5012 0.6032 0.7387 0.7525 nan 0.6736 0.6548 0.6843 0.8329 0.6138 0.7489 0.8097 0.7708 0.8219 0.7763 0.0 0.6511 0.5898 0.5952 0.7460 0.5490 0.6433 0.7184 0.6573 0.7478 0.7373
0.3255 40.0 240 0.4538 0.6439 0.7751 0.7926 nan 0.6323 0.6450 0.7895 0.8253 0.6834 0.8150 0.8167 0.8587 0.8580 0.8274 0.0 0.6155 0.5910 0.6879 0.7771 0.5999 0.7198 0.7293 0.7568 0.8085 0.7969
0.148 43.3333 260 0.5867 0.5934 0.7219 0.7242 nan 0.5819 0.6130 0.7968 0.7211 0.6326 0.7201 0.8921 0.7792 0.7586 0.7235 0.0 0.5698 0.5527 0.7039 0.6853 0.5568 0.6735 0.7675 0.6665 0.6775 0.6738
0.2442 46.6667 280 0.5438 0.6123 0.7363 0.7502 nan 0.6327 0.6296 0.7893 0.7839 0.5792 0.7350 0.8244 0.8132 0.7980 0.7780 0.0 0.6221 0.5730 0.6917 0.7543 0.5004 0.6962 0.7619 0.6561 0.7618 0.7179
0.1645 50.0 300 0.5079 0.6323 0.7651 0.7711 nan 0.7346 0.6775 0.7749 0.7836 0.6132 0.7336 0.8661 0.8496 0.8220 0.7960 0.0 0.6891 0.6033 0.7091 0.7671 0.5359 0.6642 0.7340 0.7250 0.7986 0.7295
0.2699 53.3333 320 0.5663 0.6069 0.7401 0.7475 nan 0.7376 0.6604 0.7358 0.8071 0.6238 0.7225 0.8290 0.8199 0.7012 0.7635 0.0 0.7229 0.6041 0.6395 0.7020 0.5321 0.6502 0.7546 0.6855 0.6720 0.7131
0.2053 56.6667 340 0.5013 0.6341 0.7684 0.7750 nan 0.7147 0.6551 0.7489 0.8326 0.6458 0.8202 0.8792 0.8516 0.7662 0.7696 0.0 0.6918 0.5916 0.6512 0.7922 0.5612 0.7269 0.7414 0.7425 0.7519 0.7245
0.2427 60.0 360 0.4900 0.6275 0.7673 0.7721 nan 0.7584 0.7267 0.7405 0.8320 0.6785 0.7632 0.8677 0.8152 0.6697 0.8215 0.0 0.7289 0.6565 0.6647 0.7254 0.5795 0.6798 0.7799 0.6798 0.6329 0.7752
0.0668 63.3333 380 0.4845 0.6435 0.7722 0.7766 nan 0.7479 0.7064 0.7754 0.7830 0.6316 0.7340 0.8832 0.8429 0.7855 0.8320 0.0 0.7189 0.6336 0.6988 0.7412 0.5582 0.6887 0.8092 0.7069 0.7433 0.7797
0.1278 66.6667 400 0.5318 0.6220 0.7447 0.7560 nan 0.7063 0.6682 0.7959 0.7900 0.6057 0.7272 0.8067 0.8161 0.7418 0.7891 0.0 0.6939 0.6056 0.7106 0.7178 0.5353 0.7047 0.7581 0.6757 0.7074 0.7330
0.1184 70.0 420 0.5153 0.6434 0.7695 0.7778 nan 0.7200 0.6898 0.7627 0.8246 0.6589 0.7738 0.8395 0.8716 0.7698 0.7847 0.0 0.6858 0.6246 0.7008 0.7713 0.5730 0.6913 0.8064 0.7338 0.7483 0.7425
0.1317 73.3333 440 0.5403 0.6346 0.7586 0.7668 nan 0.7143 0.6677 0.7672 0.7990 0.5974 0.7354 0.8611 0.8529 0.8030 0.7876 0.0 0.6901 0.6051 0.6957 0.7751 0.5214 0.6903 0.8054 0.7020 0.7681 0.7279
0.0959 76.6667 460 0.5506 0.6325 0.7529 0.7596 nan 0.7081 0.6401 0.7706 0.7878 0.6339 0.7571 0.8553 0.8437 0.7636 0.7686 0.0 0.6859 0.5831 0.6937 0.7470 0.5459 0.7144 0.8041 0.7182 0.7359 0.7289
0.1181 80.0 480 0.5810 0.6227 0.7489 0.7528 nan 0.7194 0.6986 0.7478 0.7786 0.6016 0.7453 0.8501 0.8435 0.7140 0.7897 0.0 0.7035 0.6368 0.6793 0.7059 0.5201 0.6781 0.7990 0.7002 0.6957 0.7306
0.1272 83.3333 500 0.5927 0.6213 0.7406 0.7501 nan 0.7056 0.6515 0.7716 0.7891 0.6042 0.7289 0.8221 0.8266 0.7345 0.7725 0.0 0.6898 0.5965 0.7000 0.7362 0.5184 0.7017 0.7840 0.6860 0.7035 0.7186
0.1653 86.6667 520 0.5653 0.6368 0.7586 0.7645 nan 0.7195 0.6718 0.7697 0.7843 0.6201 0.7360 0.8479 0.8640 0.8044 0.7683 0.0 0.7011 0.6056 0.7009 0.7658 0.5286 0.7009 0.8013 0.7081 0.7787 0.7136
0.1633 90.0 540 0.5539 0.6421 0.7641 0.7693 nan 0.7257 0.6989 0.7533 0.8062 0.6249 0.7595 0.8532 0.8622 0.7844 0.7728 0.0 0.7107 0.6324 0.6835 0.7668 0.5405 0.6966 0.8200 0.7257 0.7640 0.7232
0.0863 93.3333 560 0.5737 0.6348 0.7544 0.7607 nan 0.7237 0.6606 0.7705 0.7775 0.6186 0.7401 0.8493 0.8438 0.7727 0.7868 0.0 0.7032 0.5988 0.7055 0.7366 0.5337 0.7141 0.8136 0.7060 0.7485 0.7230
0.072 96.6667 580 0.5544 0.6400 0.7616 0.7691 nan 0.7153 0.6546 0.7755 0.7964 0.6272 0.7607 0.8605 0.8571 0.7832 0.7854 0.0 0.6956 0.5972 0.7029 0.7550 0.5402 0.7088 0.8237 0.7215 0.7640 0.7309
0.1014 100.0 600 0.5610 0.6387 0.7597 0.7684 nan 0.7170 0.6456 0.7788 0.7965 0.6187 0.7553 0.8524 0.8602 0.7899 0.7831 0.0 0.6979 0.5897 0.7036 0.7569 0.5348 0.7058 0.8192 0.7187 0.7689 0.7295

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.16.1
  • Tokenizers 0.21.1
Downloads last month
89
Safetensors
Model size
64M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jenniferlumeng/sagittal-b4-finetuned-segments

Base model

nvidia/mit-b4
Finetuned
(10)
this model