Whisper Tiny Hakka (vanilla)
This model is a fine-tuned version of openai/whisper-tiny on the HAT ASR Aligned dataset. It achieves the following results on the evaluation set:
- Loss: 0.2624
- Cer: 394.3662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 488
- training_steps: 4880
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.5947 | 0.9980 | 488 | 0.8494 | 163.1077 |
0.1948 | 1.9959 | 976 | 0.4130 | 139.9531 |
0.1153 | 2.9939 | 1464 | 0.3256 | 138.9243 |
0.0806 | 3.9918 | 1952 | 0.2937 | 158.7396 |
0.0561 | 4.9898 | 2440 | 0.2781 | 235.7249 |
0.0418 | 5.9877 | 2928 | 0.2671 | 289.3289 |
0.0294 | 6.9857 | 3416 | 0.2672 | 294.8922 |
0.025 | 7.9836 | 3904 | 0.2618 | 324.0955 |
0.0214 | 8.9816 | 4392 | 0.2617 | 363.4556 |
0.0159 | 9.9796 | 4880 | 0.2624 | 394.3662 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.3.0
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jethrowang/whisper-tiny_hat-esc_vanilla
Base model
openai/whisper-tiny