FISHER-mini-0723 / base.py
jiangab's picture
Upload folder using huggingface_hub
8960e0d verified
import logging
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple
from dataclasses import dataclass
from functools import partial
from omegaconf import MISSING, II
from typing import Optional, Callable
from enum import Enum, auto
logger = logging.getLogger(__name__)
class Modality(Enum):
AUDIO = auto()
IMAGE = auto()
TEXT = auto()
@dataclass
class D2vModalityConfig:
type: Modality = MISSING
prenet_depth: int = 0
prenet_layerdrop: float = 0.0
prenet_dropout: float = 0.0
start_drop_path_rate: float = 0.0
end_drop_path_rate: float = 0.0
num_extra_tokens: int = 1
init_extra_token_zero: bool = False
mask_noise_std: float = 0.01
mask_prob_min: Optional[float] = None
mask_prob: float = 0.8
inverse_mask: bool = True
mask_prob_adjust: float = 0.07
keep_masked_pct: float = 0.0
flexible_mask: bool = False
mask_length: int = 5
add_masks: bool = False
remove_masks: bool = False
mask_dropout: float = 0.0
encoder_zero_mask: bool = True
mask_channel_prob: float = 0.0
mask_channel_length: int = 64
ema_local_encoder: bool = True # used in data2vec_multi
ema_local_decoder: bool = False
local_grad_mult: float = 1.0
flatten: str = 'freq'
max_length: int = 128
max_freq: int = 50
use_alibi_encoder: bool = False
alibi_scale: float = 1.0
learned_alibi: bool = False
alibi_max_pos: Optional[int] = None
learned_alibi_scale: bool = False
learned_alibi_scale_per_head: bool = False
learned_alibi_scale_per_layer: bool = False
num_alibi_heads: int = II("model.num_heads")
model_depth: int = II("model.depth")
MaskInfo = namedtuple("MaskInfo", ["x_unmasked", "mask", "ids_restore", "ids_keep"])
class ModalitySpecificEncoder(nn.Module):
def __init__(
self,
modality_cfg: D2vModalityConfig,
embed_dim: int,
local_encoder: nn.Module,
project_features: nn.Module,
fixed_positional_encoder: Optional[nn.Module],
relative_positional_encoder: Optional[nn.Module], # None
context_encoder: nn.Module,
decoder: Optional[nn.Module],
get_alibi_bias: Optional[Callable[[int, int, str, str], torch.Tensor]],
):
super().__init__()
self.modality_cfg = modality_cfg
self.local_encoder = local_encoder
self.project_features = project_features
self.fixed_positional_encoder = fixed_positional_encoder
self.relative_positional_encoder = relative_positional_encoder
self.context_encoder = context_encoder
self.decoder = decoder
self.get_alibi_bias = get_alibi_bias if modality_cfg.use_alibi_encoder else None
self.local_grad_mult = self.modality_cfg.local_grad_mult
self.extra_tokens = None
if modality_cfg.num_extra_tokens > 0:
self.extra_tokens = nn.Parameter(
torch.zeros(1, modality_cfg.num_extra_tokens, embed_dim)
)
if not modality_cfg.init_extra_token_zero:
nn.init.normal_(self.extra_tokens)
elif self.extra_tokens.size(1) > 1:
nn.init.normal_(self.extra_tokens[:, 1:])
self.alibi_scale = None
if self.get_alibi_bias is not None:
self.alibi_scale = nn.Parameter(
torch.full(
(
(modality_cfg.prenet_depth + modality_cfg.model_depth)
if modality_cfg.learned_alibi_scale_per_layer
else 1,
1,
self.modality_cfg.num_alibi_heads
if modality_cfg.learned_alibi_scale_per_head
else 1,
1,
1,
),
modality_cfg.alibi_scale,
dtype=torch.float,
),
requires_grad=modality_cfg.learned_alibi_scale,
)
if modality_cfg.learned_alibi and self.get_alibi_bias is not None:
assert modality_cfg.alibi_max_pos is not None
alibi_bias = self.get_alibi_bias(
batch_size=1,
time_steps=modality_cfg.alibi_max_pos,
heads=modality_cfg.num_alibi_heads,
scale=1.0,
dtype=torch.float,
device="cpu",
)
self.alibi_bias = nn.Parameter(alibi_bias)
self.get_alibi_bias = partial(
_learned_alibi_bias, alibi_bias=self.alibi_bias
)
def upgrade_state_dict_named(self, state_dict, name):
k = f"{name}.alibi_scale"
if k in state_dict and state_dict[k].dim() == 4:
state_dict[k] = state_dict[k].unsqueeze(0)
return state_dict
def convert_padding_mask(self, x, padding_mask):
return padding_mask
def local_features(self, features):
x = self.local_encoder(features)
x = self.project_features(x) # nn.Identity()
return x
def contextualized_features(
self,
x,
padding_mask,
mask, # True
remove_masked, # train: True; infer: False
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
if padding_mask is not None:
padding_mask = self.convert_padding_mask(x, padding_mask) # [b,t,f] => [b,seq]
local_features = x
if mask and clone_batch == 1:
local_features = local_features.clone()
orig_B, orig_T, _ = x.shape
pre_mask_B = orig_B
mask_info = None
x_pos = None
# x: [B, seq_len, embed_dim]
if self.fixed_positional_encoder is not None: # models.modules.FixPositionalEncoder
x = x + self.fixed_positional_encoder(x, padding_mask)[:, :x.size(1), :]
if self.relative_positional_encoder is not None:
x_pos = self.relative_positional_encoder(x)
masked_padding_mask = padding_mask
alibi_bias = None
alibi_scale = self.alibi_scale
if self.get_alibi_bias is not None:
alibi_bias = self.get_alibi_bias(
batch_size=pre_mask_B,
time_steps=orig_T,
heads=self.modality_cfg.num_alibi_heads,
dtype=torch.float32,
device=x.device,
)
if alibi_scale is not None:
alibi_scale = alibi_scale.clamp_min(0)
if alibi_scale.size(0) == 1:
alibi_bias = alibi_bias * alibi_scale.squeeze(0).type_as(alibi_bias)
alibi_scale = None
if clone_batch > 1:
alibi_bias = alibi_bias.repeat_interleave(clone_batch, 0)
if mask_info is not None and remove_masked:
alibi_bias = masked_alibi(alibi_bias, mask_info)
if self.extra_tokens is not None:
num = self.extra_tokens.size(1)
x = torch.cat([self.extra_tokens.expand(x.size(0), -1, -1), x], dim=1)
if masked_padding_mask is not None:
# B x T
masked_padding_mask = F.pad(masked_padding_mask, (num, 0))
if alibi_bias is not None:
# B x H x T x T
alibi_bias = F.pad(alibi_bias, (num, 0, num, 0))
x = self.context_encoder(
x,
masked_padding_mask,
alibi_bias,
alibi_scale[: self.modality_cfg.prenet_depth]
if alibi_scale is not None
else None,
)
return {
"x": x,
"local_features": local_features,
"padding_mask": masked_padding_mask,
"alibi_bias": alibi_bias,
"alibi_scale": alibi_scale[self.modality_cfg.prenet_depth :]
if alibi_scale is not None and alibi_scale.size(0) > 1
else alibi_scale,
"encoder_mask": mask_info,
}
def forward(
self,
features,
padding_mask,
mask: bool,
remove_masked: bool,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
x = self.local_features(features) # patch embed
# x: [bs, time*freq, embed_dim], e.g. [12, 512, 768]
out = self.contextualized_features(
x,
padding_mask,
mask,
remove_masked,
clone_batch,
mask_seeds,
precomputed_mask,
) # add mask, discarded masked, context encoder (only layer norm)
return out
def reset_parameters(self):
pass
def remove_pretraining_modules(self, keep_decoder=False):
if not keep_decoder:
self.decoder = None
def get_annealed_rate(start, end, curr_step, total_steps):
if curr_step >= total_steps:
return end
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
def get_alibi(
max_positions: int,
attention_heads: int,
dims: int = 1,
distance: str = "manhattan",
):
def get_slopes(n):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
# In the paper, we only train models that have 2^a heads for some
# a. This function has some good properties that only occur when
# the input is a power of 2. To maintain that even when the number
# of heads is not a power of 2, we use this workaround.
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
maxpos = max_positions
attn_heads = attention_heads
slopes = torch.Tensor(get_slopes(attn_heads))
if dims == 1:
# prepare alibi position linear bias. Note that wav2vec2 is non
# autoregressive model so we want a symmetric mask with 0 on the
# diagonal and other wise linear decreasing valuees
pos_bias = (
torch.abs(
torch.arange(maxpos).unsqueeze(0) - torch.arange(maxpos).unsqueeze(1)
)
* -1
)
elif dims == 2:
if distance == "manhattan":
df = lambda x1, y1, x2, y2: abs(x1 - x2) + abs(y1 - y2)
elif distance == "euclidean":
df = lambda x1, y1, x2, y2: math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
n = math.sqrt(max_positions)
assert n.is_integer(), n
n = int(n)
pos_bias = torch.zeros((max_positions, max_positions))
for i in range(n):
for j in range(n):
for k in range(n):
for l in range(n):
new_x = i * n + j
new_y = k * n + l
pos_bias[new_x, new_y] = -df(i, j, k, l)
else:
raise Exception(f"unsupported number of alibi dims: {dims}")
alibi_bias = slopes.unsqueeze(1).unsqueeze(1) * pos_bias.unsqueeze(0).expand(
attn_heads, -1, -1
)
return alibi_bias
def get_alibi_bias(
alibi_biases,
batch_size,
time_steps,
heads,
dtype,
device,
dims=1,
distance="manhattan",
):
cache_key = f"{dims}_{heads}_{distance}"
buffered = alibi_biases.get(cache_key, None)
target_size = heads * batch_size
if (
buffered is None
or buffered.size(0) < target_size
or buffered.size(1) < time_steps
or buffered.dtype != dtype
or buffered.device != device
):
bt = max(time_steps, buffered.size(1) if buffered is not None else 0)
bn = max(target_size, buffered.size(0) if buffered is not None else 0) // heads
buffered = (
get_alibi(bt, heads, dims=dims, distance=distance)
.to(dtype=dtype, device=device)
.repeat(bn, 1, 1)
)
alibi_biases[cache_key] = buffered
b = buffered[:target_size, :time_steps, :time_steps]
b = b.view(batch_size, heads, time_steps, time_steps)
return b
def _learned_alibi_bias(
alibi_bias,
batch_size,
time_steps,
heads,
scale,
dtype,
device,
):
assert alibi_bias.size(1) == heads, alibi_bias.shape
assert alibi_bias.dtype == dtype, alibi_bias.dtype
assert alibi_bias.device == device, alibi_bias.device
if alibi_bias.size(-1) < time_steps:
psz = math.ceil((time_steps - alibi_bias.size(-1)) / 2)
alibi_bias = F.pad(alibi_bias, (psz, psz, psz, psz), mode="replicate")
alibi_bias = alibi_bias.expand(batch_size, -1, -1, -1) * scale
return alibi_bias[..., :time_steps, :time_steps]
def masked_alibi(alibi_bias, mask_info):
H = alibi_bias.size(1)
orig_bias = alibi_bias
index = mask_info.ids_keep.unsqueeze(1)[..., 0].unsqueeze(-1)
alibi_bias = torch.gather(
orig_bias,
dim=-2,
index=index.expand(-1, H, -1, mask_info.ids_restore.size(1)),
)
alibi_bias = torch.gather(
alibi_bias,
dim=-1,
index=index.transpose(-1, -2).expand(-1, H, alibi_bias.size(-2), -1),
)
return alibi_bias