FISHER-mini-0723 / modules.py
jiangab's picture
Upload folder using huggingface_hub
8960e0d verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import to_2tuple
class PatchEmbed_new(nn.Module):
""" Flexible Image to Patch Embedding
"""
def __init__(
self,
patch_size=16,
in_chans=3,
embed_dim=768,
stride=16,
flatten='freq'
):
super().__init__()
self.flatten = flatten
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
assert flatten in ['time', 'freq']
self.patch_size = patch_size
# no padding for conv
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches
def forward(self, x):
x = self.proj(x) # (B,768,64,8)
if self.flatten == 'freq':
x = x.flatten(2).transpose(1, 2) # flatten from dim
else:
x = x.transpose(-2, -1).flatten(2).transpose(1, 2)
return x
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size[0], dtype=np.float32)
grid_w = np.arange(grid_size[1], dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class FixedPositionalEncoder(nn.Module):
def __init__(self, pos_embed: torch.Tensor):
super().__init__()
self.positions = pos_embed
def forward(self, x: torch.Tensor, padding_mask):
return self.positions.to(x.device)
class BlockEncoder(nn.Module):
def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout):
super().__init__()
self.blocks = blocks
self.norm = norm_layer
self.layer_norm_first = layer_norm_first
self.layerdrop = layerdrop
self.dropout = nn.Dropout(dropout, inplace=True)
def forward(self, x, padding_mask, alibi_bias, alibi_scale):
if self.norm is not None and not self.layer_norm_first:
x = self.norm(x)
x = self.dropout(x)
for i, blk in enumerate(self.blocks):
if (
not self.training
or self.layerdrop == 0
or (np.random.random() > self.layerdrop)
):
ab = alibi_bias
if ab is not None and alibi_scale is not None:
scale = (
alibi_scale[i]
if alibi_scale.size(0) > 1
else alibi_scale.squeeze(0)
)
ab = ab * scale.type_as(ab)
x, _ = blk(x, padding_mask, ab)
if self.norm is not None and self.layer_norm_first:
x = self.norm(x)
return x
class AltBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
mlp_drop=0.0,
post_mlp_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
layer_norm_first=True,
ffn_targets=False,
cosine_attention=False,
):
super().__init__()
self.layer_norm_first = layer_norm_first
self.ffn_targets = ffn_targets
from timm.models.vision_transformer import DropPath, Mlp
self.norm1 = norm_layer(dim)
self.attn = AltAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
cosine_attention=cosine_attention,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop,
)
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)
def forward(self, x, padding_mask=None, alibi_bias=None):
if self.layer_norm_first:
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
r = x = self.mlp(self.norm2(x))
t = x
x = r + self.drop_path(self.post_mlp_dropout(x))
if not self.ffn_targets:
t = x
else:
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
r = x = self.norm1(x)
x = self.mlp(x)
t = x
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
if not self.ffn_targets:
t = x
return x, t
class AltAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
cosine_attention=False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.cosine_attention = cosine_attention
if cosine_attention:
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
)
def forward(self, x, padding_mask=None, alibi_bias=None):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4) # qkv x B x H x L x D
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
dtype = q.dtype
if self.cosine_attention:
# cosine attention
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
logit_scale = torch.clamp(
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
).exp()
attn = attn * logit_scale
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if alibi_bias is not None:
attn = attn.type_as(alibi_bias)
attn[:, : alibi_bias.size(1)] += alibi_bias
if padding_mask is not None and padding_mask.any():
attn = attn.masked_fill(
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2) #
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x