|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
from timm.models.layers import to_2tuple
|
|
|
|
|
|
class PatchEmbed_new(nn.Module):
|
|
""" Flexible Image to Patch Embedding
|
|
"""
|
|
def __init__(
|
|
self,
|
|
patch_size=16,
|
|
in_chans=3,
|
|
embed_dim=768,
|
|
stride=16,
|
|
flatten='freq'
|
|
):
|
|
super().__init__()
|
|
self.flatten = flatten
|
|
patch_size = to_2tuple(patch_size)
|
|
stride = to_2tuple(stride)
|
|
assert flatten in ['time', 'freq']
|
|
|
|
self.patch_size = patch_size
|
|
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride)
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
if self.flatten == 'freq':
|
|
x = x.flatten(2).transpose(1, 2)
|
|
else:
|
|
x = x.transpose(-2, -1).flatten(2).transpose(1, 2)
|
|
return x
|
|
|
|
|
|
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
|
|
"""
|
|
grid_size: int of the grid height and width
|
|
return:
|
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
|
"""
|
|
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
|
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
|
grid = np.meshgrid(grid_w, grid_h)
|
|
grid = np.stack(grid, axis=0)
|
|
|
|
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
|
if cls_token:
|
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
|
return pos_embed
|
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
|
assert embed_dim % 2 == 0
|
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
|
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
|
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1)
|
|
return emb
|
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
|
"""
|
|
embed_dim: output dimension for each position
|
|
pos: a list of positions to be encoded: size (M,)
|
|
out: (M, D)
|
|
"""
|
|
assert embed_dim % 2 == 0
|
|
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
|
omega /= embed_dim / 2.0
|
|
omega = 1.0 / 10000 ** omega
|
|
|
|
pos = pos.reshape(-1)
|
|
out = np.einsum("m,d->md", pos, omega)
|
|
|
|
emb_sin = np.sin(out)
|
|
emb_cos = np.cos(out)
|
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1)
|
|
return emb
|
|
|
|
|
|
class FixedPositionalEncoder(nn.Module):
|
|
def __init__(self, pos_embed: torch.Tensor):
|
|
super().__init__()
|
|
self.positions = pos_embed
|
|
|
|
def forward(self, x: torch.Tensor, padding_mask):
|
|
return self.positions.to(x.device)
|
|
|
|
|
|
class BlockEncoder(nn.Module):
|
|
def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout):
|
|
super().__init__()
|
|
self.blocks = blocks
|
|
self.norm = norm_layer
|
|
self.layer_norm_first = layer_norm_first
|
|
self.layerdrop = layerdrop
|
|
self.dropout = nn.Dropout(dropout, inplace=True)
|
|
|
|
def forward(self, x, padding_mask, alibi_bias, alibi_scale):
|
|
if self.norm is not None and not self.layer_norm_first:
|
|
x = self.norm(x)
|
|
|
|
x = self.dropout(x)
|
|
|
|
for i, blk in enumerate(self.blocks):
|
|
if (
|
|
not self.training
|
|
or self.layerdrop == 0
|
|
or (np.random.random() > self.layerdrop)
|
|
):
|
|
ab = alibi_bias
|
|
if ab is not None and alibi_scale is not None:
|
|
scale = (
|
|
alibi_scale[i]
|
|
if alibi_scale.size(0) > 1
|
|
else alibi_scale.squeeze(0)
|
|
)
|
|
ab = ab * scale.type_as(ab)
|
|
x, _ = blk(x, padding_mask, ab)
|
|
|
|
if self.norm is not None and self.layer_norm_first:
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
class AltBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
mlp_drop=0.0,
|
|
post_mlp_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
layer_norm_first=True,
|
|
ffn_targets=False,
|
|
cosine_attention=False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.layer_norm_first = layer_norm_first
|
|
self.ffn_targets = ffn_targets
|
|
|
|
from timm.models.vision_transformer import DropPath, Mlp
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = AltAttention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
cosine_attention=cosine_attention,
|
|
)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=mlp_drop,
|
|
)
|
|
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)
|
|
|
|
def forward(self, x, padding_mask=None, alibi_bias=None):
|
|
if self.layer_norm_first:
|
|
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
|
|
r = x = self.mlp(self.norm2(x))
|
|
t = x
|
|
x = r + self.drop_path(self.post_mlp_dropout(x))
|
|
if not self.ffn_targets:
|
|
t = x
|
|
else:
|
|
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
|
|
r = x = self.norm1(x)
|
|
x = self.mlp(x)
|
|
t = x
|
|
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
|
|
if not self.ffn_targets:
|
|
t = x
|
|
|
|
return x, t
|
|
|
|
|
|
class AltAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
cosine_attention=False,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.cosine_attention = cosine_attention
|
|
|
|
if cosine_attention:
|
|
self.logit_scale = nn.Parameter(
|
|
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
|
|
)
|
|
|
|
def forward(self, x, padding_mask=None, alibi_bias=None):
|
|
B, N, C = x.shape
|
|
qkv = (
|
|
self.qkv(x)
|
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
.permute(2, 0, 3, 1, 4)
|
|
)
|
|
q, k, v = (
|
|
qkv[0],
|
|
qkv[1],
|
|
qkv[2],
|
|
)
|
|
|
|
dtype = q.dtype
|
|
|
|
if self.cosine_attention:
|
|
|
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
|
|
logit_scale = torch.clamp(
|
|
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
|
|
).exp()
|
|
attn = attn * logit_scale
|
|
else:
|
|
q = q * self.scale
|
|
attn = q @ k.transpose(-2, -1)
|
|
|
|
if alibi_bias is not None:
|
|
attn = attn.type_as(alibi_bias)
|
|
attn[:, : alibi_bias.size(1)] += alibi_bias
|
|
|
|
if padding_mask is not None and padding_mask.any():
|
|
attn = attn.masked_fill(
|
|
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
|
float("-inf"),
|
|
)
|
|
|
|
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
|
|
attn = self.attn_drop(attn)
|
|
x = (attn @ v).transpose(1, 2)
|
|
x = x.reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|