SentenceTransformer based on Snowflake/snowflake-arctic-embed-xs
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-xs. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-xs
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jimmydzj2006/snowflake-arctic-embed-xs_finetuned_aipolicy")
# Run inference
sentences = [
'How can human subjects revoke their consent according to the suggested action?',
'Action ID: MS-2.2-003\nSuggested Action: Provide human subjects with options to withdraw participation or revoke their\nconsent for present or future use of their data in GAI applications.\nGAI Risks: Data Privacy; Human-AI\nConfiguration; Information\nIntegrity',
'Disinformation and misinformation – both of which may be facilitated by GAI – may erode public trust in true or valid evidence and information, with downstream effects. For example, a synthetic image of a Pentagon blast went viral and briefly caused a drop in the stock market. Generative AI models can also assist malicious actors in creating compelling imagery and propaganda to support disinformation campaigns, which may not be photorealistic, but could enable these campaigns to gain more reach and engagement on social media platforms. Additionally, generative AI models can assist malicious actors in creating fraudulent content intended to impersonate others.\n\n Trustworthy AI Characteristics: Accountable and Transparent, Safe, Valid and Reliable, Interpretable and Explainable\n\n 2.9. Information Security\n\n Information security for computer systems and data is a mature field with widely accepted and standardized practices for offensive and defensive cyber capabilities. GAI-based systems present two primary information security risks: GAI could potentially discover or enable new cybersecurity risks by lowering the barriers for or easing automated exercise of offensive capabilities; simultaneously, it expands the available attack surface, as GAI itself is vulnerable to attacks like prompt injection or data poisoning. \n\n Offensive cyber capabilities advanced by GAI systems may augment cybersecurity attacks such as hacking, malware, and phishing. Reports have indicated that LLMs are already able to discover some vulnerabilities in systems (hardware, software, data) and write code to exploit them. Sophisticated threat actors might further these risks by developing GAI-powered security co-pilots for use in several parts of the attack chain, including informing attackers on how to proactively evade threat detection and escalate privileges after gaining system access.\n\n Information security for GAI models and systems also includes maintaining availability of the GAI system and the integrity and (when applicable) the confidentiality of the GAI code, training data, and model weights. To identify and secure potential attack points in AI systems or specific components of the AI',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6484 |
cosine_accuracy@3 | 0.7363 |
cosine_accuracy@5 | 0.7802 |
cosine_accuracy@10 | 0.8571 |
cosine_precision@1 | 0.6484 |
cosine_precision@3 | 0.2454 |
cosine_precision@5 | 0.156 |
cosine_precision@10 | 0.0857 |
cosine_recall@1 | 0.6484 |
cosine_recall@3 | 0.7363 |
cosine_recall@5 | 0.7802 |
cosine_recall@10 | 0.8571 |
cosine_ndcg@10 | 0.7434 |
cosine_mrr@10 | 0.7083 |
cosine_map@100 | 0.7158 |
dot_accuracy@1 | 0.6484 |
dot_accuracy@3 | 0.7363 |
dot_accuracy@5 | 0.7802 |
dot_accuracy@10 | 0.8571 |
dot_precision@1 | 0.6484 |
dot_precision@3 | 0.2454 |
dot_precision@5 | 0.156 |
dot_precision@10 | 0.0857 |
dot_recall@1 | 0.6484 |
dot_recall@3 | 0.7363 |
dot_recall@5 | 0.7802 |
dot_recall@10 | 0.8571 |
dot_ndcg@10 | 0.7434 |
dot_mrr@10 | 0.7083 |
dot_map@100 | 0.7158 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,730 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 8 tokens
- mean: 15.71 tokens
- max: 33 tokens
- min: 19 tokens
- mean: 183.25 tokens
- max: 467 tokens
- Samples:
sentence_0 sentence_1 What is the Action ID associated with the suggested action?
Action ID: MS-2.12-004
Suggested Action: Verify effectiveness of carbon capture or offset programs for GAI training and
applications, and address green-washing concerns.
GAI Risks: EnvironmentalWhat is the suggested action regarding carbon capture or offset programs?
Action ID: MS-2.12-004
Suggested Action: Verify effectiveness of carbon capture or offset programs for GAI training and
applications, and address green-washing concerns.
GAI Risks: EnvironmentalWhat specific concerns should be addressed in relation to carbon capture programs?
Action ID: MS-2.12-004
Suggested Action: Verify effectiveness of carbon capture or offset programs for GAI training and
applications, and address green-washing concerns.
GAI Risks: Environmental - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 284, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_map@100 |
---|---|---|---|
0.2924 | 50 | - | 0.5949 |
0.5848 | 100 | - | 0.6455 |
0.8772 | 150 | - | 0.6680 |
1.0 | 171 | - | 0.6721 |
1.1696 | 200 | - | 0.6811 |
1.4620 | 250 | - | 0.6850 |
1.7544 | 300 | - | 0.6959 |
2.0 | 342 | - | 0.7021 |
2.0468 | 350 | - | 0.7008 |
2.3392 | 400 | - | 0.7043 |
2.6316 | 450 | - | 0.7017 |
2.9240 | 500 | 5.9671 | 0.7018 |
3.0 | 513 | - | 0.7039 |
3.2164 | 550 | - | 0.7014 |
3.5088 | 600 | - | 0.7039 |
3.8012 | 650 | - | 0.7022 |
4.0 | 684 | - | 0.7058 |
4.0936 | 700 | - | 0.7039 |
4.3860 | 750 | - | 0.7061 |
4.6784 | 800 | - | 0.7030 |
4.9708 | 850 | - | 0.7073 |
5.0 | 855 | - | 0.7073 |
5.2632 | 900 | - | 0.7071 |
5.5556 | 950 | - | 0.7095 |
5.8480 | 1000 | 3.5897 | 0.7103 |
6.0 | 1026 | - | 0.7080 |
6.1404 | 1050 | - | 0.7075 |
6.4327 | 1100 | - | 0.7089 |
6.7251 | 1150 | - | 0.7087 |
7.0 | 1197 | - | 0.7102 |
7.0175 | 1200 | - | 0.7101 |
7.3099 | 1250 | - | 0.7134 |
7.6023 | 1300 | - | 0.7130 |
7.8947 | 1350 | - | 0.7133 |
8.0 | 1368 | - | 0.7142 |
8.1871 | 1400 | - | 0.7125 |
8.4795 | 1450 | - | 0.7163 |
8.7719 | 1500 | 3.0206 | 0.7124 |
9.0 | 1539 | - | 0.7144 |
9.0643 | 1550 | - | 0.7158 |
9.3567 | 1600 | - | 0.7159 |
9.6491 | 1650 | - | 0.7158 |
9.9415 | 1700 | - | 0.7158 |
10.0 | 1710 | - | 0.7158 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.0
- Transformers: 4.44.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jimmydzj2006/snowflake-arctic-embed-xs_finetuned_aipolicy
Base model
Snowflake/snowflake-arctic-embed-xsEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.648
- Cosine Accuracy@3 on Unknownself-reported0.736
- Cosine Accuracy@5 on Unknownself-reported0.780
- Cosine Accuracy@10 on Unknownself-reported0.857
- Cosine Precision@1 on Unknownself-reported0.648
- Cosine Precision@3 on Unknownself-reported0.245
- Cosine Precision@5 on Unknownself-reported0.156
- Cosine Precision@10 on Unknownself-reported0.086
- Cosine Recall@1 on Unknownself-reported0.648
- Cosine Recall@3 on Unknownself-reported0.736