|
---
|
|
language:
|
|
- en
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:557850
|
|
- loss:DenoisingAutoEncoderLoss
|
|
base_model: google-bert/bert-base-cased
|
|
widget:
|
|
- source_sentence: A man his
|
|
sentences:
|
|
- A construction worker peeking out of a manhole while his coworker sits on the
|
|
sidewalk smiling.
|
|
- A man is jumping unto his filthy bed.
|
|
- A man is sitting in a chair and looking at something that he is holding.
|
|
- source_sentence: A and a woman walking with a a
|
|
sentences:
|
|
- A man and a woman is walking with a dog across a beach
|
|
- A baby smiles while swinging in a blue infant swing.
|
|
- A man uses a projector to give a presentation.
|
|
- source_sentence: blue
|
|
sentences:
|
|
- A baby wearing a bib makes a funny face at the camera.
|
|
- The man is wearing a blue shirt.
|
|
- There are three policemen on bikes making sure that the streets are cleared for
|
|
the president.
|
|
- source_sentence: Two boys and
|
|
sentences:
|
|
- Two boys sitting and eating ice cream.
|
|
- A man with a hat, boots, and brown pants, is playing the violin outside in front
|
|
of a black structure.
|
|
- A man is a safety suit walking outside while another man in a dark suit walks
|
|
into a building.
|
|
- source_sentence: A finds humorous that.
|
|
sentences:
|
|
- A older gentleman finds it humorous that he is getting his picture taken while
|
|
doing his laundry.
|
|
- A dark-skinned man smoking a cigarette near a green trashcan.
|
|
- A woman walks on a sidewalk wearing a white dress with a blue plaid pattern.
|
|
datasets:
|
|
- sentence-transformers/all-nli
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
---
|
|
|
|
# SentenceTransformer based on google-bert/bert-base-cased
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) <!-- at revision cd5ef92a9fb2f889e972770a36d4ed042daf221e -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
|
- **Language:** en
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("jinoooooooooo/bert-base-cased-nli-tsdae")
|
|
# Run inference
|
|
sentences = [
|
|
'A finds humorous that.',
|
|
'A older gentleman finds it humorous that he is getting his picture taken while doing his laundry.',
|
|
'A woman walks on a sidewalk wearing a white dress with a blue plaid pattern.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### all-nli
|
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
|
* Size: 557,850 training samples
|
|
* Columns: <code>damaged</code> and <code>original</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | damaged | original |
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.45 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.49 tokens</li><li>max: 46 tokens</li></ul> |
|
|
* Samples:
|
|
| damaged | original |
|
|
|:-----------------------------|:---------------------------------------------------------------------------|
|
|
| <code>a horse jumps a</code> | <code>A person on a horse jumps over a broken down airplane.</code> |
|
|
| <code>at</code> | <code>Children smiling and waving at camera</code> |
|
|
| <code>boy jumping a.</code> | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> |
|
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### all-nli
|
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
|
* Size: 6,584 evaluation samples
|
|
* Columns: <code>damaged</code> and <code>original</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | damaged | original |
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 8.52 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.26 tokens</li><li>max: 69 tokens</li></ul> |
|
|
* Samples:
|
|
| damaged | original |
|
|
|:---------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| <code>Two while packages.</code> | <code>Two women are embracing while holding to go packages.</code> |
|
|
| <code>young children, with the number one with 2 are standing wooden in a bathroom in sink.</code> | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> |
|
|
| <code>A a during world city of</code> | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> |
|
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | Validation Loss |
|
|
|:-----:|:----:|:-------------:|:---------------:|
|
|
| 0.016 | 100 | 7.3226 | 7.2198 |
|
|
| 0.032 | 200 | 3.7141 | 6.3506 |
|
|
| 0.048 | 300 | 3.0632 | 5.8854 |
|
|
| 0.064 | 400 | 2.6549 | 5.7539 |
|
|
| 0.08 | 500 | 2.5332 | 5.5007 |
|
|
| 0.096 | 600 | 2.3137 | 5.5201 |
|
|
| 0.112 | 700 | 2.2533 | 5.3476 |
|
|
| 0.128 | 800 | 2.0654 | 5.3438 |
|
|
| 0.144 | 900 | 1.9943 | 5.3552 |
|
|
| 0.16 | 1000 | 1.9587 | 5.2709 |
|
|
| 0.176 | 1100 | 1.8053 | 5.4117 |
|
|
| 0.192 | 1200 | 1.7414 | 5.4315 |
|
|
| 0.208 | 1300 | 1.6773 | 5.2983 |
|
|
| 0.224 | 1400 | 1.6035 | 5.5064 |
|
|
| 0.24 | 1500 | 1.5592 | 5.5167 |
|
|
| 0.256 | 1600 | 1.5837 | 5.4428 |
|
|
| 0.272 | 1700 | 1.469 | 5.5266 |
|
|
| 0.288 | 1800 | 1.384 | 5.5159 |
|
|
| 0.304 | 1900 | 1.3616 | 5.4305 |
|
|
| 0.32 | 2000 | 1.3065 | 5.5076 |
|
|
| 0.336 | 2100 | 1.3045 | 5.5460 |
|
|
| 0.352 | 2200 | 1.3447 | 5.3051 |
|
|
| 0.368 | 2300 | 1.3367 | 5.4867 |
|
|
| 0.384 | 2400 | 1.148 | 5.6086 |
|
|
| 0.4 | 2500 | 1.2229 | 5.5027 |
|
|
| 0.416 | 2600 | 1.16 | 5.4446 |
|
|
| 0.432 | 2700 | 1.1809 | 5.4059 |
|
|
| 0.448 | 2800 | 1.2099 | 5.6255 |
|
|
| 0.464 | 2900 | 1.1264 | 5.2683 |
|
|
| 0.48 | 3000 | 1.1589 | 5.3651 |
|
|
| 0.496 | 3100 | 1.0954 | 5.3109 |
|
|
| 0.512 | 3200 | 1.0962 | 5.4071 |
|
|
| 0.528 | 3300 | 1.1185 | 5.4022 |
|
|
| 0.544 | 3400 | 1.0656 | 5.2648 |
|
|
| 0.56 | 3500 | 1.0935 | 5.2185 |
|
|
| 0.576 | 3600 | 1.0235 | 5.2950 |
|
|
| 0.592 | 3700 | 1.0256 | 5.3534 |
|
|
| 0.608 | 3800 | 0.9711 | 5.2015 |
|
|
| 0.624 | 3900 | 0.9901 | 5.1011 |
|
|
| 0.64 | 4000 | 0.9959 | 5.2055 |
|
|
| 0.656 | 4100 | 1.0018 | 5.2456 |
|
|
| 0.672 | 4200 | 0.9836 | 5.3166 |
|
|
| 0.688 | 4300 | 1.0481 | 5.2324 |
|
|
| 0.704 | 4400 | 0.9917 | 5.1831 |
|
|
| 0.72 | 4500 | 0.9595 | 5.1268 |
|
|
| 0.736 | 4600 | 1.0096 | 5.1112 |
|
|
| 0.752 | 4700 | 0.9986 | 5.0724 |
|
|
| 0.768 | 4800 | 0.9405 | 5.1163 |
|
|
| 0.784 | 4900 | 0.9057 | 5.0673 |
|
|
| 0.8 | 5000 | 0.9938 | 4.9926 |
|
|
| 0.816 | 5100 | 0.9849 | 4.9733 |
|
|
| 0.832 | 5200 | 0.8973 | 5.0531 |
|
|
| 0.848 | 5300 | 0.924 | 5.0007 |
|
|
| 0.864 | 5400 | 0.9516 | 5.0079 |
|
|
| 0.88 | 5500 | 0.9637 | 4.9513 |
|
|
| 0.896 | 5600 | 0.9232 | 5.0035 |
|
|
| 0.912 | 5700 | 0.9518 | 4.9339 |
|
|
| 0.928 | 5800 | 0.8939 | 4.9783 |
|
|
| 0.944 | 5900 | 0.8752 | 4.9495 |
|
|
| 0.96 | 6000 | 0.9187 | 4.9496 |
|
|
| 0.976 | 6100 | 0.8987 | 4.9177 |
|
|
| 0.992 | 6200 | 0.9034 | 4.9224 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.9
|
|
- Sentence Transformers: 3.4.0.dev0
|
|
- Transformers: 4.47.0
|
|
- PyTorch: 2.5.1+cu121
|
|
- Accelerate: 1.2.1
|
|
- Datasets: 3.1.0
|
|
- Tokenizers: 0.21.0
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### DenoisingAutoEncoderLoss
|
|
```bibtex
|
|
@inproceedings{wang-2021-TSDAE,
|
|
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
|
|
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
|
month = nov,
|
|
year = "2021",
|
|
address = "Punta Cana, Dominican Republic",
|
|
publisher = "Association for Computational Linguistics",
|
|
pages = "671--688",
|
|
url = "https://arxiv.org/abs/2104.06979",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |