ModernRadBERT-mlm

This model is a fine-tuned version of answerdotai/ModernBERT-base on the unsloth/Radiology_mini dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6936

https://www.johnpaulett.com/2025/modernbert-radiology-fine-tuning-masked-langage-model/

WARNING: For demonstration purposes only

Model description

More information needed

Intended uses & limitations

Not intended for real-world use, was an example of MLM fine-tuning on a small radiology dataset.

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
1.8693 1.0 248 1.5996
1.6968 2.0 496 1.7973
1.7187 3.0 744 1.7232
1.6518 4.0 992 1.7343
1.5003 5.0 1240 1.7727
1.3346 6.0 1488 1.7357
1.4029 7.0 1736 1.7164
1.2762 8.0 1984 1.7123
1.2441 9.0 2232 1.6978
1.2016 10.0 2480 1.7374
1.1887 11.0 2728 1.7076
1.0205 12.0 2976 1.6736
1.0771 13.0 3224 1.7209
1.0607 14.0 3472 1.6753
0.909 15.0 3720 1.6172
0.9255 16.0 3968 1.7418
0.8676 17.0 4216 1.6914
0.8533 18.0 4464 1.7310
0.845 19.0 4712 1.7893
0.869 20.0 4960 1.6936

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
70
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for johnpaulett/ModernRadBERT-mlm

Finetuned
(181)
this model