xtremedistil-l6-h256-uncased-question-vs-statement-classifier
This model is a fine-tuned version of microsoft/xtremedistil-l6-h256-uncased on question-vs-statement-classifier dataset, which is a clone of the kaggle Questions vs Statements Classification dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0227
- Train Sparse Categorical Accuracy: 0.9894
- Validation Loss: 0.0294
- Validation Sparse Categorical Accuracy: 0.9868
- Epoch: 3
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
---|---|---|---|---|
0.0681 | 0.9770 | 0.0327 | 0.9839 | 0 |
0.0301 | 0.9856 | 0.0321 | 0.9853 | 1 |
0.0262 | 0.9875 | 0.0286 | 0.9864 | 2 |
0.0227 | 0.9894 | 0.0294 | 0.9868 | 3 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.9.1
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 61
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for jonaskoenig/xtremedistil-l6-h256-uncased-question-vs-statement-classifier
Base model
microsoft/xtremedistil-l6-h256-uncased