Edit model card

Fine-tuned XLSR-53 large model for speech recognition in Chinese

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Chinese using the train and validation splits of Common Voice 6.1, CSS10 and ST-CMDS. When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

Usage

The model can be used directly (without a language model) as follows...

Using the HuggingSound library:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)

Writing your own inference script:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "zh-CN"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
ๅฎ‹ๆœๆœซๅนดๅนด้—ดๅฎšๅฑ…็ฒ‰ๅฒญๅ›ดใ€‚ ๅฎ‹ๆœๆœซๅนดๅนด้—ดๅฎšๅฑ…ๅˆ†ๅฎšไธบ
ๆธๆธ่กŒๅŠจไธไพฟ ๅปบๅขƒ่กŒๅŠจไธ็‰‡
ไบŒๅไธ€ๅนดๅŽปไธ–ใ€‚ ไบŒๅไธ€ๅนดๅŽปไธ–
ไป–ไปฌ่‡ช็งฐๆฐๅ“ˆๆ‹‰ใ€‚ ไป–ไปฌ่‡ช็งฐๅฎถๅ“ˆ
ๅฑ€้ƒจๅนฒๆถฉ็š„ไพ‹ๅญๅŒ…ๆ‹ฌๆœ‰ๅฃๅนฒใ€็œผ็›ๅนฒ็‡ฅใ€ๅŠ้˜ด้“ๅนฒ็‡ฅใ€‚ ่Š็‰ฉๅนฒๅฏบ็š„ไพ‹ๅญๅŒ…ๆ‹ฌๆœ‰ๅฃ่‚็œผ็›ๅนฒ็…งไปฅๅŠ้˜ดๅˆฐๅนฒ
ๅ˜‰้–ไธ‰ๅๅ…ซๅนด๏ผŒ็™ป่ฟ›ๅฃซ็ฌฌไธ‰็”ฒ็ฌฌไบŒๅใ€‚ ๅ˜‰้–ไธ‰ๅๅ…ซๅนด็™ป่ฟ›ๅฃซ็ฌฌไธ‰็”ฒ็ฌฌไบŒๅ
่ฟ™ไธ€ๅ็งฐไธ€็›ดๆฒฟ็”จ่‡ณไปŠใ€‚ ่ฟ™ไธ€ๅ็งฐไธ€็›ดๆฒฟ็”จๆ˜ฏๅฟƒ
ๅŒๆ—ถไน”ๅ‡กๅฐผ่ฟ˜ๅพ—ๅˆฐๅŒ…็จŽๅˆๅŒๅ’Œ่ฎธๅคšๆ˜Ž็Ÿพ็Ÿฟ็š„็ป่ฅๆƒใ€‚ ๅŒๆ—ถๆกฅๅ‡กๅฆฎ่ฟ˜ๅพ—ๅˆฐๅŒ…็จŽๅˆๅŒๅ’Œ่ฎธๅคšๆฐ‘็น็Ÿฟ็š„็ป่ฅๆƒ
ไธบไบ†ๆƒฉ็ฝš่ฅฟๆ‰ŽๅŸŽๅ’Œๅกžๅฐ”ๆŸฑ็š„็ป“็›Ÿ๏ผŒ็›Ÿๅ†›ๅœจๆŠต่พพๅŽๅฐ†ๅค–ๅŸŽ็ƒงๆฏใ€‚ ไธบไบ†ๆ›พ็ฝš่ฅฟๆ‰ŽๅŸŽๅ’Œๅกžๅฐ”็ด ็š„่Š‚็›Ÿ็›Ÿๅ†›ๅœจๆŠต่พพๅŽๅฐ†ๅค–ๆ›พ็ƒงๆฏ
ๆฒณๅ†…็››ไบง้ป„่‰ฒๆ— ้ฑผ้ณž็š„้ณๅฐ„้ฑผใ€‚ ๅˆ็ฑป็”Ÿๅœบ็Žฏ่‰ฒๆ— ้ฑผๆž—็š„้ช‘ๅฐ„้ฑผ

Evaluation

The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice.

import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "zh-CN"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "ยฟ", ".", "!", "ยก", ";", "๏ผ›", ":", '""', "%", '"', "๏ฟฝ", "สฟ", "ยท", "แƒป", "~", "ีž",
                  "ุŸ", "ุŒ", "เฅค", "เฅฅ", "ยซ", "ยป", "โ€ž", "โ€œ", "โ€", "ใ€Œ", "ใ€", "โ€˜", "โ€™", "ใ€Š", "ใ€‹", "(", ")", "[", "]",
                  "{", "}", "=", "`", "_", "+", "<", ">", "โ€ฆ", "โ€“", "ยฐ", "ยด", "สพ", "โ€น", "โ€บ", "ยฉ", "ยฎ", "โ€”", "โ†’", "ใ€‚",
                  "ใ€", "๏น‚", "๏น", "โ€ง", "๏ฝž", "๏น", "๏ผŒ", "๏ฝ›", "๏ฝ", "๏ผˆ", "๏ผ‰", "๏ผป", "๏ผฝ", "ใ€", "ใ€‘", "โ€ฅ", "ใ€ฝ",
                  "ใ€Ž", "ใ€", "ใ€", "ใ€Ÿ", "โŸจ", "โŸฉ", "ใ€œ", "๏ผš", "๏ผ", "๏ผŸ", "โ™ช", "ุ›", "/", "\\", "ยบ", "โˆ’", "^", "'", "สป", "ห†"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")

Test Result:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-13). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

Model WER CER
jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn 82.37% 19.03%
ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt 84.01% 20.95%

Citation

If you want to cite this model you can use this:

@misc{grosman2021xlsr53-large-chinese,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn}},
  year={2021}
}
Downloads last month
8,639,508
Inference API
or

Model tree for jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn

Finetunes
1 model

Dataset used to train jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn

Spaces using jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn 48

Evaluation results