legal-mcq-gemma-2b
This model is a fine-tuned version of google/gemma-2-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0430
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6312 | 0.1348 | 50 | 1.4909 |
1.8023 | 0.2695 | 100 | 1.7316 |
1.8044 | 0.4043 | 150 | 1.7173 |
1.6679 | 0.5391 | 200 | 1.1123 |
1.3583 | 0.6739 | 250 | 0.8995 |
1.1691 | 0.8086 | 300 | 0.6657 |
0.9808 | 0.9434 | 350 | 0.7485 |
0.605 | 1.0782 | 400 | 0.5601 |
0.5032 | 1.2129 | 450 | 0.4895 |
0.4466 | 1.3477 | 500 | 0.4132 |
0.4158 | 1.4825 | 550 | 0.3070 |
0.3581 | 1.6173 | 600 | 0.2680 |
0.3132 | 1.7520 | 650 | 0.2225 |
0.2682 | 1.8868 | 700 | 0.1625 |
0.2197 | 2.0216 | 750 | 0.1424 |
0.1341 | 2.1563 | 800 | 0.1202 |
0.1058 | 2.2911 | 850 | 0.1032 |
0.1038 | 2.4259 | 900 | 0.0847 |
0.0784 | 2.5606 | 950 | 0.0702 |
0.0764 | 2.6954 | 1000 | 0.0529 |
0.0737 | 2.8302 | 1050 | 0.0451 |
0.062 | 2.9650 | 1100 | 0.0430 |
Framework versions
- PEFT 0.16.0
- Transformers 4.54.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 4