dit-base_tobacco-small_tobacco3482_simkd
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6962
- Accuracy: 0.85
- Brier Loss: 0.2700
- Nll: 0.9667
- F1 Micro: 0.85
- F1 Macro: 0.8241
- Ece: 0.2479
- Aurc: 0.0379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 50 | 1.0013 | 0.18 | 0.8965 | 4.5407 | 0.18 | 0.1379 | 0.2160 | 0.6680 |
No log | 2.0 | 100 | 0.9916 | 0.3 | 0.8871 | 3.1090 | 0.3 | 0.1526 | 0.3057 | 0.4735 |
No log | 3.0 | 150 | 0.9644 | 0.51 | 0.8433 | 2.4502 | 0.51 | 0.3257 | 0.4499 | 0.2544 |
No log | 4.0 | 200 | 0.9207 | 0.575 | 0.7585 | 2.1964 | 0.575 | 0.3958 | 0.4563 | 0.2193 |
No log | 5.0 | 250 | 0.8726 | 0.635 | 0.6620 | 2.3923 | 0.635 | 0.5105 | 0.4321 | 0.1730 |
No log | 6.0 | 300 | 0.8303 | 0.665 | 0.5604 | 1.4922 | 0.665 | 0.5869 | 0.3717 | 0.1305 |
No log | 7.0 | 350 | 0.7994 | 0.745 | 0.4490 | 1.3772 | 0.745 | 0.6541 | 0.3557 | 0.0853 |
No log | 8.0 | 400 | 0.7822 | 0.79 | 0.4124 | 1.2076 | 0.79 | 0.7109 | 0.3035 | 0.0873 |
No log | 9.0 | 450 | 0.7808 | 0.78 | 0.3955 | 1.5529 | 0.78 | 0.7041 | 0.3123 | 0.0763 |
0.8704 | 10.0 | 500 | 0.7923 | 0.695 | 0.4296 | 1.7171 | 0.695 | 0.6150 | 0.3012 | 0.1039 |
0.8704 | 11.0 | 550 | 0.7848 | 0.745 | 0.4327 | 1.6327 | 0.745 | 0.6972 | 0.2800 | 0.1321 |
0.8704 | 12.0 | 600 | 0.7600 | 0.825 | 0.3579 | 1.2569 | 0.825 | 0.7621 | 0.3015 | 0.0624 |
0.8704 | 13.0 | 650 | 0.7570 | 0.79 | 0.3554 | 1.4638 | 0.79 | 0.7706 | 0.2964 | 0.0621 |
0.8704 | 14.0 | 700 | 0.7504 | 0.81 | 0.3434 | 1.5597 | 0.81 | 0.7714 | 0.2930 | 0.0589 |
0.8704 | 15.0 | 750 | 0.7481 | 0.8 | 0.3439 | 1.3827 | 0.8000 | 0.7641 | 0.2805 | 0.0675 |
0.8704 | 16.0 | 800 | 0.7358 | 0.81 | 0.3357 | 1.4522 | 0.81 | 0.7889 | 0.3077 | 0.0610 |
0.8704 | 17.0 | 850 | 0.7294 | 0.82 | 0.3179 | 1.0458 | 0.82 | 0.7820 | 0.2909 | 0.0564 |
0.8704 | 18.0 | 900 | 0.7229 | 0.815 | 0.3092 | 1.2562 | 0.815 | 0.7862 | 0.2719 | 0.0496 |
0.8704 | 19.0 | 950 | 0.7186 | 0.825 | 0.3069 | 1.0425 | 0.825 | 0.7977 | 0.2824 | 0.0558 |
0.6968 | 20.0 | 1000 | 0.7156 | 0.83 | 0.3031 | 0.9897 | 0.83 | 0.8039 | 0.2660 | 0.0490 |
0.6968 | 21.0 | 1050 | 0.7135 | 0.82 | 0.3014 | 1.0562 | 0.82 | 0.7887 | 0.2745 | 0.0462 |
0.6968 | 22.0 | 1100 | 0.7116 | 0.835 | 0.2997 | 0.9822 | 0.835 | 0.8102 | 0.2817 | 0.0452 |
0.6968 | 23.0 | 1150 | 0.7114 | 0.82 | 0.3047 | 0.9197 | 0.82 | 0.7937 | 0.2669 | 0.0484 |
0.6968 | 24.0 | 1200 | 0.7111 | 0.8 | 0.3032 | 0.9744 | 0.8000 | 0.7690 | 0.2624 | 0.0504 |
0.6968 | 25.0 | 1250 | 0.7076 | 0.805 | 0.3025 | 0.9884 | 0.805 | 0.7677 | 0.2538 | 0.0478 |
0.6968 | 26.0 | 1300 | 0.7074 | 0.82 | 0.3037 | 0.9954 | 0.82 | 0.7877 | 0.2592 | 0.0496 |
0.6968 | 27.0 | 1350 | 0.7053 | 0.825 | 0.2998 | 0.9712 | 0.825 | 0.7885 | 0.2628 | 0.0454 |
0.6968 | 28.0 | 1400 | 0.7046 | 0.82 | 0.2936 | 0.9780 | 0.82 | 0.7886 | 0.2573 | 0.0438 |
0.6968 | 29.0 | 1450 | 0.7068 | 0.82 | 0.3000 | 0.9943 | 0.82 | 0.7895 | 0.2382 | 0.0447 |
0.6551 | 30.0 | 1500 | 0.7045 | 0.83 | 0.2881 | 0.9107 | 0.83 | 0.8010 | 0.2363 | 0.0439 |
0.6551 | 31.0 | 1550 | 0.7033 | 0.825 | 0.2936 | 0.9794 | 0.825 | 0.7858 | 0.2556 | 0.0433 |
0.6551 | 32.0 | 1600 | 0.7014 | 0.82 | 0.2890 | 0.9799 | 0.82 | 0.7895 | 0.2495 | 0.0418 |
0.6551 | 33.0 | 1650 | 0.7020 | 0.815 | 0.2921 | 0.9658 | 0.815 | 0.7820 | 0.2556 | 0.0449 |
0.6551 | 34.0 | 1700 | 0.7012 | 0.835 | 0.2885 | 1.0419 | 0.835 | 0.8042 | 0.2581 | 0.0417 |
0.6551 | 35.0 | 1750 | 0.7013 | 0.835 | 0.2902 | 0.9773 | 0.835 | 0.8035 | 0.2522 | 0.0435 |
0.6551 | 36.0 | 1800 | 0.7016 | 0.825 | 0.2884 | 0.9815 | 0.825 | 0.7851 | 0.2518 | 0.0432 |
0.6551 | 37.0 | 1850 | 0.7007 | 0.835 | 0.2888 | 0.9724 | 0.835 | 0.8133 | 0.2486 | 0.0438 |
0.6551 | 38.0 | 1900 | 0.6984 | 0.825 | 0.2847 | 0.9650 | 0.825 | 0.7897 | 0.2487 | 0.0415 |
0.6551 | 39.0 | 1950 | 0.7001 | 0.84 | 0.2843 | 1.0535 | 0.8400 | 0.8104 | 0.2566 | 0.0418 |
0.6381 | 40.0 | 2000 | 0.6990 | 0.825 | 0.2843 | 0.9673 | 0.825 | 0.7963 | 0.2396 | 0.0429 |
0.6381 | 41.0 | 2050 | 0.7002 | 0.84 | 0.2875 | 1.0599 | 0.8400 | 0.8098 | 0.2618 | 0.0413 |
0.6381 | 42.0 | 2100 | 0.6967 | 0.83 | 0.2791 | 0.9676 | 0.83 | 0.7929 | 0.2441 | 0.0403 |
0.6381 | 43.0 | 2150 | 0.6978 | 0.835 | 0.2802 | 0.9771 | 0.835 | 0.8071 | 0.2526 | 0.0416 |
0.6381 | 44.0 | 2200 | 0.6969 | 0.84 | 0.2795 | 0.9478 | 0.8400 | 0.8164 | 0.2464 | 0.0418 |
0.6381 | 45.0 | 2250 | 0.6971 | 0.835 | 0.2760 | 0.9712 | 0.835 | 0.8030 | 0.2333 | 0.0392 |
0.6381 | 46.0 | 2300 | 0.6985 | 0.84 | 0.2813 | 0.9692 | 0.8400 | 0.8072 | 0.2403 | 0.0404 |
0.6381 | 47.0 | 2350 | 0.6976 | 0.835 | 0.2796 | 1.0420 | 0.835 | 0.8042 | 0.2374 | 0.0406 |
0.6381 | 48.0 | 2400 | 0.6965 | 0.85 | 0.2778 | 0.9753 | 0.85 | 0.8205 | 0.2653 | 0.0403 |
0.6381 | 49.0 | 2450 | 0.6969 | 0.825 | 0.2747 | 0.9606 | 0.825 | 0.7871 | 0.2478 | 0.0394 |
0.6274 | 50.0 | 2500 | 0.6954 | 0.835 | 0.2746 | 0.9572 | 0.835 | 0.8070 | 0.2395 | 0.0406 |
0.6274 | 51.0 | 2550 | 0.6972 | 0.835 | 0.2755 | 1.0383 | 0.835 | 0.8070 | 0.2484 | 0.0391 |
0.6274 | 52.0 | 2600 | 0.6955 | 0.83 | 0.2752 | 0.9699 | 0.83 | 0.7998 | 0.2562 | 0.0406 |
0.6274 | 53.0 | 2650 | 0.6950 | 0.835 | 0.2693 | 0.9563 | 0.835 | 0.8030 | 0.2300 | 0.0373 |
0.6274 | 54.0 | 2700 | 0.6960 | 0.83 | 0.2727 | 0.9646 | 0.83 | 0.7977 | 0.2347 | 0.0399 |
0.6274 | 55.0 | 2750 | 0.6946 | 0.83 | 0.2711 | 0.9603 | 0.83 | 0.8058 | 0.2279 | 0.0384 |
0.6274 | 56.0 | 2800 | 0.6940 | 0.835 | 0.2726 | 0.9579 | 0.835 | 0.8088 | 0.2478 | 0.0380 |
0.6274 | 57.0 | 2850 | 0.6951 | 0.835 | 0.2732 | 0.9594 | 0.835 | 0.8090 | 0.2336 | 0.0418 |
0.6274 | 58.0 | 2900 | 0.6936 | 0.84 | 0.2684 | 0.9575 | 0.8400 | 0.8079 | 0.2490 | 0.0373 |
0.6274 | 59.0 | 2950 | 0.6949 | 0.835 | 0.2701 | 0.9543 | 0.835 | 0.8088 | 0.2261 | 0.0389 |
0.6207 | 60.0 | 3000 | 0.6939 | 0.84 | 0.2697 | 0.9574 | 0.8400 | 0.8161 | 0.2339 | 0.0378 |
0.6207 | 61.0 | 3050 | 0.6952 | 0.84 | 0.2706 | 0.9611 | 0.8400 | 0.8080 | 0.2306 | 0.0379 |
0.6207 | 62.0 | 3100 | 0.6940 | 0.835 | 0.2691 | 0.9523 | 0.835 | 0.8086 | 0.2451 | 0.0382 |
0.6207 | 63.0 | 3150 | 0.6946 | 0.835 | 0.2672 | 0.9627 | 0.835 | 0.8088 | 0.2347 | 0.0374 |
0.6207 | 64.0 | 3200 | 0.6949 | 0.84 | 0.2713 | 0.9602 | 0.8400 | 0.8139 | 0.2404 | 0.0384 |
0.6207 | 65.0 | 3250 | 0.6944 | 0.835 | 0.2662 | 0.9603 | 0.835 | 0.8079 | 0.2308 | 0.0377 |
0.6207 | 66.0 | 3300 | 0.6946 | 0.835 | 0.2698 | 0.9593 | 0.835 | 0.8088 | 0.2352 | 0.0390 |
0.6207 | 67.0 | 3350 | 0.6934 | 0.83 | 0.2658 | 0.9558 | 0.83 | 0.8060 | 0.2260 | 0.0384 |
0.6207 | 68.0 | 3400 | 0.6944 | 0.83 | 0.2689 | 0.9517 | 0.83 | 0.8058 | 0.2208 | 0.0399 |
0.6207 | 69.0 | 3450 | 0.6946 | 0.835 | 0.2698 | 0.9553 | 0.835 | 0.8042 | 0.2331 | 0.0383 |
0.6156 | 70.0 | 3500 | 0.6948 | 0.83 | 0.2690 | 0.9549 | 0.83 | 0.8058 | 0.2280 | 0.0391 |
0.6156 | 71.0 | 3550 | 0.6936 | 0.84 | 0.2676 | 0.9532 | 0.8400 | 0.8122 | 0.2346 | 0.0383 |
0.6156 | 72.0 | 3600 | 0.6946 | 0.835 | 0.2667 | 0.9545 | 0.835 | 0.8088 | 0.2492 | 0.0379 |
0.6156 | 73.0 | 3650 | 0.6939 | 0.84 | 0.2670 | 0.9534 | 0.8400 | 0.8139 | 0.2466 | 0.0377 |
0.6156 | 74.0 | 3700 | 0.6948 | 0.835 | 0.2695 | 0.9522 | 0.835 | 0.8086 | 0.2312 | 0.0390 |
0.6156 | 75.0 | 3750 | 0.6951 | 0.835 | 0.2701 | 0.9622 | 0.835 | 0.8111 | 0.2158 | 0.0397 |
0.6156 | 76.0 | 3800 | 0.6949 | 0.84 | 0.2682 | 0.9606 | 0.8400 | 0.8139 | 0.2415 | 0.0382 |
0.6156 | 77.0 | 3850 | 0.6950 | 0.84 | 0.2684 | 0.9629 | 0.8400 | 0.8118 | 0.2493 | 0.0381 |
0.6156 | 78.0 | 3900 | 0.6946 | 0.835 | 0.2685 | 0.9522 | 0.835 | 0.8111 | 0.2360 | 0.0390 |
0.6156 | 79.0 | 3950 | 0.6944 | 0.84 | 0.2668 | 0.9544 | 0.8400 | 0.8118 | 0.2377 | 0.0372 |
0.612 | 80.0 | 4000 | 0.6954 | 0.84 | 0.2692 | 0.9579 | 0.8400 | 0.8139 | 0.2321 | 0.0381 |
0.612 | 81.0 | 4050 | 0.6956 | 0.84 | 0.2701 | 0.9606 | 0.8400 | 0.8139 | 0.2354 | 0.0382 |
0.612 | 82.0 | 4100 | 0.6952 | 0.835 | 0.2686 | 0.9600 | 0.835 | 0.8086 | 0.2540 | 0.0381 |
0.612 | 83.0 | 4150 | 0.6955 | 0.835 | 0.2689 | 0.9571 | 0.835 | 0.8086 | 0.2465 | 0.0383 |
0.612 | 84.0 | 4200 | 0.6952 | 0.84 | 0.2689 | 0.9583 | 0.8400 | 0.8159 | 0.2308 | 0.0387 |
0.612 | 85.0 | 4250 | 0.6956 | 0.835 | 0.2702 | 0.9618 | 0.835 | 0.8042 | 0.2365 | 0.0386 |
0.612 | 86.0 | 4300 | 0.6950 | 0.835 | 0.2683 | 0.9572 | 0.835 | 0.8086 | 0.2228 | 0.0382 |
0.612 | 87.0 | 4350 | 0.6949 | 0.84 | 0.2692 | 0.9583 | 0.8400 | 0.8118 | 0.2497 | 0.0381 |
0.612 | 88.0 | 4400 | 0.6953 | 0.845 | 0.2695 | 0.9617 | 0.845 | 0.8209 | 0.2558 | 0.0386 |
0.612 | 89.0 | 4450 | 0.6952 | 0.845 | 0.2689 | 0.9611 | 0.845 | 0.8209 | 0.2251 | 0.0383 |
0.6097 | 90.0 | 4500 | 0.6961 | 0.835 | 0.2701 | 0.9645 | 0.835 | 0.8042 | 0.2444 | 0.0386 |
0.6097 | 91.0 | 4550 | 0.6954 | 0.845 | 0.2689 | 0.9619 | 0.845 | 0.8209 | 0.2324 | 0.0383 |
0.6097 | 92.0 | 4600 | 0.6959 | 0.845 | 0.2700 | 0.9636 | 0.845 | 0.8209 | 0.2277 | 0.0388 |
0.6097 | 93.0 | 4650 | 0.6959 | 0.85 | 0.2694 | 0.9654 | 0.85 | 0.8241 | 0.2396 | 0.0379 |
0.6097 | 94.0 | 4700 | 0.6960 | 0.85 | 0.2696 | 0.9643 | 0.85 | 0.8241 | 0.2471 | 0.0379 |
0.6097 | 95.0 | 4750 | 0.6959 | 0.85 | 0.2694 | 0.9650 | 0.85 | 0.8241 | 0.2233 | 0.0378 |
0.6097 | 96.0 | 4800 | 0.6962 | 0.845 | 0.2700 | 0.9666 | 0.845 | 0.8144 | 0.2558 | 0.0382 |
0.6097 | 97.0 | 4850 | 0.6962 | 0.85 | 0.2699 | 0.9662 | 0.85 | 0.8241 | 0.2400 | 0.0381 |
0.6097 | 98.0 | 4900 | 0.6962 | 0.85 | 0.2700 | 0.9662 | 0.85 | 0.8241 | 0.2396 | 0.0380 |
0.6097 | 99.0 | 4950 | 0.6963 | 0.85 | 0.2700 | 0.9667 | 0.85 | 0.8241 | 0.2478 | 0.0379 |
0.6083 | 100.0 | 5000 | 0.6962 | 0.85 | 0.2700 | 0.9667 | 0.85 | 0.8241 | 0.2479 | 0.0379 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jordyvl/dit-base_tobacco-small_tobacco3482_simkd
Base model
WinKawaks/vit-small-patch16-224