(lo)whipa-models
Collection
Full and PEFT LoRA (LoWhIPA) fine-tuned Whisper-base and Whisper-large-v2 models for language-agnostic IPA transcription of speech.
•
14 items
•
Updated
This Whisper-for-IPA (WhIPA) model adapter is a PEFT LoRA fine-tuned version of openai/whisper-base on a subset (1k samples) of the Arabic Speech Corpus (https://en.arabicspeechcorpus.com) with custom IPA transcriptions transliterated from the provided Buckwalter transcriptions; ASC-IPA dataset available at https://doi.org/10.5281/zenodo.17111977.
For deployment and description, please refer to https://github.com/jshrdt/whipa.
from transformers import WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor
from peft import PeftModel
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-base", task="transcribe")
tokenizer.add_special_tokens({"additional_special_tokens": ["<|ip|>"] + tokenizer.all_special_tokens})
base_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
base_model.generation_config.lang_to_id["<|ip|>"] = tokenizer.convert_tokens_to_ids(["<|ip|>"])[0]
base_model.resize_token_embeddings(len(tokenizer))
whipa_model = PeftModel.from_pretrained(base_model, "jshrdt/lowhipa-base-asc")
whipa_model.generation_config.language = "<|ip|>"
whipa_model.generation_config.task = "transcribe"
whipa_processor = WhisperProcessor.from_pretrained("openai/whisper-base", task="transcribe")
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5071 | 2.0 | 126 | 0.4070 |
0.2359 | 4.0 | 252 | 0.2963 |
0.149 | 6.0 | 378 | 0.2626 |
0.1051 | 8.0 | 504 | 0.2578 |
0.0811 | 10.0 | 630 | 0.2584 |
Base model
openai/whisper-base