(lo)whipa-models
Collection
Full and PEFT LoRA (LoWhIPA) fine-tuned Whisper-base and Whisper-large-v2 models for language-agnostic IPA transcription of speech.
•
14 items
•
Updated
This Whisper-for-IPA (WhIPA) model adapter is a PEFT LoRA fine-tuned version of openai/whisper-base on a subset of the CommonVoice11 dataset (1k samples each from Greek, Finnish, Hungarian, Japanese, Maltese, Polish, Tamil) with G2P-based IPA transcriptions.
For deployment and description, please refer to https://github.com/jshrdt/whipa.
from transformers import WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor
from peft import PeftModel
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-base", task="transcribe")
tokenizer.add_special_tokens({"additional_special_tokens": ["<|ip|>"] + tokenizer.all_special_tokens})
base_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
base_model.generation_config.lang_to_id["<|ip|>"] = tokenizer.convert_tokens_to_ids(["<|ip|>"])[0]
base_model.resize_token_embeddings(len(tokenizer))
whipa_model = PeftModel.from_pretrained(base_model, "jshrdt/lowhipa-base-cv")
whipa_model.generation_config.language = "<|ip|>"
whipa_model.generation_config.task = "transcribe"
whipa_processor = WhisperProcessor.from_pretrained("openai/whisper-base", task="transcribe")
More information needed
More information needed
Base model
openai/whisper-base