Automatic Speech Recognition
PEFT
TensorBoard
Safetensors
Generated from Trainer
Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

lowhipa-large-comb

This Whisper-for-IPA (WhIPA) model adapter is a PEFT LoRA fine-tuned version of openai/whisper-large-v2 on a subset of:

Model description

For deployment and description, please refer to https://github.com/jshrdt/whipa.

from transformers import WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor
from peft import PeftModel

tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-large-v2", task="transcribe")
tokenizer.add_special_tokens({"additional_special_tokens": ["<|ip|>"] + tokenizer.all_special_tokens})

base_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
base_model.generation_config.lang_to_id["<|ip|>"] = tokenizer.convert_tokens_to_ids(["<|ip|>"])[0]
base_model.resize_token_embeddings(len(tokenizer))

whipa_model = PeftModel.from_pretrained(base_model, "jshrdt/lowhipa-large-comb")

whipa_model.generation_config.language = "<|ip|>"
whipa_model.generation_config.task = "transcribe"

whipa_processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2", task="transcribe")

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

Training results

Training Loss Epoch Validation Loss
0.7537 2.0323 0.5796585083007812
0.2638 4.0645 0.4017384648323059
0.1532 6.0968 0.40539106726646423
0.0909 8.1290 0.4510815143585205
0.0535 10.1613 0.4732421040534973

Framework versions

  • PEFT 0.15.1
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jshrdt/lowhipa-large-comb

Adapter
(275)
this model

Datasets used to train jshrdt/lowhipa-large-comb

Collection including jshrdt/lowhipa-large-comb