lowhipa-large-sr / README.md
jshrdt's picture
Update README.md
b5fe618 verified
metadata
library_name: peft
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - tunis-ai/arabic_speech_corpus
model-index:
  - name: lowhipa-large-sr
    results: []
pipeline_tag: automatic-speech-recognition
language:
  - acy

lowhipa-large-sr (Sanna Related)

This Whisper-for-IPA (WhIPA) model adapter is a PEFT LoRA fine-tuned version of openai/whisper-large-v2 on a subset of:

Model description

For deployment and description, please refer to https://github.com/jshrdt/whipa.

from transformers import WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor
from peft import PeftModel

tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-large-v2", task="transcribe")
tokenizer.add_special_tokens({"additional_special_tokens": ["<|ip|>"] + tokenizer.all_special_tokens})

base_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
base_model.generation_config.lang_to_id["<|ip|>"] = tokenizer.convert_tokens_to_ids(["<|ip|>"])[0]
base_model.resize_token_embeddings(len(tokenizer))

whipa_model = PeftModel.from_pretrained(base_model, "jshrdt/lowhipa-large-sr")

whipa_model.generation_config.language = "<|ip|>"
whipa_model.generation_config.task = "transcribe"

whipa_processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2", task="transcribe")

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

Training results

Training Loss Epoch Validation Loss
0.4344 2.0323 0.3692754805088043
0.1875 4.0645 0.3102695643901825
0.0717 6.0968 0.30600059032440186
0.0202 8.1290 0.32697898149490356
0.0101 10.1613 0.34040552377700806

Framework versions

  • PEFT 0.15.1
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0