whipa-large-cv

Model details

This Whisper-for-IPA (WhIPA) model is a fine-tuned version of openai/whisper-large-v2 on a subset of the CommonVoice11 dataset (1k samples each from Greek, Finnish, Hungarian, Japanese, Maltese, Polish, Tamil) with G2P-based IPA transcriptions. It (6) achieves the following results on the evaluation set:

  • Loss: 0.5570
  • Lvnshtn: 5.9371
  • cer: 0.1709
  • cer_norm: 0.1604
  • ped: 5.5229
  • per: 0.1810
  • pfer: 5.7470
  • LhPD_(mipa): 2.0216
  • wefed: 17.9254
  • wefer: 0.5507
Epoch lvnshtn cer cer_norm ped per pfer LhPD_(mipa) wefed wefer time
2 8.382857142857137 0.24163589269510524 0.22863069089892205 7.757142857142851 0.2524059166580333 7.5604320437314785 2.6376535390328346 22.74642857142856 0.7052453948748261 3199.799334049225
4 6.691428571428563 0.19601619003578613 0.17116995643519559 6.197142857142849 0.20629669844107124 6.507800864530915 2.243887904361885 20.86178571428572 0.5902481277563488 6436.061186313629
6 5.9371428571428515 0.17092720391633578 0.1603608557874088 5.522857142857141 0.18096545655791033 5.746953179375352 2.021641668726793 17.925357142857134 0.5507118071695863 9660.67699599266
8 6.082857142857139 0.17536400979804245 0.1629698988097059 5.642857142857143 0.18555627617952597 5.993579904596805 2.100972125284737 18.620357142857138 0.57805324454652 12875.556059837341
10 6.134285714285711 0.1762981563905388 0.1632004044495094 5.668571428571428 0.1856530781701276 5.956850376357517 2.097938104613861 18.657499999999995 0.5731345760321149 16079.743387937546

Model description

For deployment and description, please refer to https://github.com/jshrdt/whipa.

from transformers import WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor

whipa_model = WhisperForConditionalGeneration.from_pretrained("jshrdt/whipa-large-cv")

whipa_model.generation_config.language = "<|ip|>"
whipa_model.generation_config.task = "transcribe"

whipa_tokenizer = WhisperTokenizer.from_pretrained("jshrdt/whipa-large-cv", task="transcribe")
whipa_processor = WhisperProcessor.from_pretrained("jshrdt/whipa-large-cv", task="transcribe")
  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
24
Safetensors
Model size
2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jshrdt/whipa-large-cv

Finetuned
(225)
this model

Dataset used to train jshrdt/whipa-large-cv

Collection including jshrdt/whipa-large-cv