rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("juanpprim/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 3
  • Number of training documents: 168
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 for - klarna - the - card - just 26 -1_for_klarna_the_card
0 my - the - to - for - klarna 22 0_my_the_to_for
1 my - klarna - and - details - account 120 1_my_klarna_and_details

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: auto
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.3.0+4.g1dfc98e16a
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 4.1.0
  • Transformers: 4.42.2
  • Numba: 0.60.0
  • Plotly: 6.1.2
  • Python: 3.9.22
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support