rag-topic-model
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("juanpprim/rag-topic-model")
topic_model.get_topic_info()
Topic overview
- Number of topics: 3
- Number of training documents: 168
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | for - klarna - the - card - just | 26 | -1_for_klarna_the_card |
0 | my - the - to - for - klarna | 22 | 0_my_the_to_for |
1 | my - klarna - and - details - account | 120 | 1_my_klarna_and_details |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: auto
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.3.0+4.g1dfc98e16a
- Scikit-Learn: 1.6.1
- Sentence-transformers: 4.1.0
- Transformers: 4.42.2
- Numba: 0.60.0
- Plotly: 6.1.2
- Python: 3.9.22
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support